《逻辑代数卡诺图课件.ppt》由会员分享,可在线阅读,更多相关《逻辑代数卡诺图课件.ppt(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、逻辑代数卡诺图逻辑代数卡诺图第1页,此课件共37页哦逻辑函数的表示方法逻辑函数的表示方法逻辑函数的表示方法逻辑函数的表示方法 1 1真值表真值表将输入逻辑变量的各种可能取值和相应的函数值排列在一将输入逻辑变量的各种可能取值和相应的函数值排列在一起而组成的表格。起而组成的表格。2 2函数表达式函数表达式由逻辑变量和由逻辑变量和“与与”、“或或”、“非非”三种运算符所构成的三种运算符所构成的表达式。表达式。由由真真值值表表可可以以转转换换为为函函数数表表达达式式。例例如如,由由“三三人人表表决决”函函数数的的真真值值表表可写出可写出逻辑表达式:逻辑表达式:解:解:该函数有两个变量,有该函数有两个变
2、量,有4 4种取值的种取值的可能组合,将他们按顺序排列起来即可能组合,将他们按顺序排列起来即得真值表。得真值表。反之,由函数表达式也可以转换成真值表。反之,由函数表达式也可以转换成真值表。例例1.2 1.2 列出下列函数的真值表:列出下列函数的真值表:真值表真值表0 00 11 01 1A B 1001 L第2页,此课件共37页哦 3 3 3 3逻辑图逻辑图逻辑图逻辑图由逻辑符号及它们之间的连线而构成的图形。由逻辑符号及它们之间的连线而构成的图形。由逻辑符号及它们之间的连线而构成的图形。由逻辑符号及它们之间的连线而构成的图形。例例1.41.4 写出如图所示写出如图所示逻辑图的函数表达式。逻辑图
3、的函数表达式。由函数表达式可以画出逻辑图。由函数表达式可以画出逻辑图。解:解:可用两个非门、两个与门可用两个非门、两个与门和一个或门组成。和一个或门组成。由逻辑图也可以写出表达式。由逻辑图也可以写出表达式。解:解:例1.3、画出下列函数的逻辑图:第3页,此课件共37页哦2.1.1 逻辑代数的定律和运算规则一、逻辑代数的基本公式第4页,此课件共37页哦2.1.2逻辑代数的基本规则1.代入规则 对于任何一个逻辑等式,以某个逻辑变量或逻辑函数同时取代等式两端任何一个逻辑变量后,等式依然成立。例如,在反演律中用BC去代替等式中的B,则新的等式仍成立:第5页,此课件共37页哦 2.反演规则 将一个逻辑函
4、数L进行下列变换:,;0 1,1 0;原变量 反变量,反变量 原变量。所得新函数表达式叫做L的反函数,用L表示。利用反演规则,可以非常方便地求得一个函数的反函数。第6页,此课件共37页哦3.对偶规则将一个逻辑函数L进行下列变换:,0 1,1 0所得新函数表达式叫做L的对偶式,用 L 表示。对偶规则的基本内容是:如果两个逻辑函数表达相等,它们的对偶式也一定相等。基本公式中的公式l和公式2就互为对偶 式。第7页,此课件共37页哦例2.3 求以下函数的反函数:解:第8页,此课件共37页哦在应用反演规则求反函数时要注意以下两点:在应用反演规则求反函数时要注意以下两点:(1)保持运算的优先顺序不变,必要
5、时加括号表明。(2)变换中,几个变量(一个以上)的公共非号保持不变。第9页,此课件共37页哦2.1.3 逻辑函数的代数化简法一、逻辑函数式的常见形式一个逻辑函数的表达式不是唯一的,可以有多种形式,并且能互相转换。例如:第10页,此课件共37页哦其中,与或表达式是逻辑函数的最基本表达形式。第11页,此课件共37页哦二、逻辑函数的最简“与或表达式”的标准(1)与项最少,即表达式中“+”号最少。(2)每个与项中的变量数最少,即表达式中“”号最少。第12页,此课件共37页哦三、用代数法化简逻辑函数1、并项法。运用公式 ,将两项合并为一项,消去一个变量。2、吸收法。运用吸收律 A+AB=A,消去多余的与
6、项。如(3)消去法。(4)配项法。第13页,此课件共37页哦在化简逻辑函数时,要灵活运用上述方法,才能将逻辑函数化为最简。第14页,此课件共37页哦2.2 逻辑函数的卡诺图化简法 )一、最小项的定义与性质第15页,此课件共37页哦二、逻辑函数的最小项表达式 任何一个逻辑函数表达式都可以转换为一组最小项之和,称为最小项表达式。例4.1:将以下逻辑函数转换成最小项表达式:解:=m7+m6+m3+m1第16页,此课件共37页哦例4.2 将下列逻辑函数转换成最小项表达式:解:=m7+m6+m3+m5=m(3,5,6,7)第17页,此课件共37页哦三、卡诺图 1相邻最小项 如果两个最小项中只有一个变量互
7、为反变量,其余变量均相同,则称这两个最小项为逻辑相邻,简称相邻项。例如,最小项ABC和 就是相邻最小项。如果两个相邻最小项出现在同一个逻辑函数中,可以合并为一项,同时消去互为反变量的那个量。如第18页,此课件共37页哦2.卡诺图最小项的定义:n个变量的逻辑函数中,包含全部变量的乘积项称为最小项。n变量逻辑函数的全部最小项共有2n个。用小方格来表示最小项,一个小方格代表一个最小项,然后将这些最小项按照相邻性排列起来。即用小方格几何位置上的相邻性来表示最小项逻辑上的相邻性。第19页,此课件共37页哦3卡诺图的结构(1)二变量卡诺图第20页,此课件共37页哦(2)三变量卡诺图 第21页,此课件共37
8、页哦(3)四变量卡诺图第22页,此课件共37页哦仔细观察可以发现,卡诺图具有很强的相邻性:(1)直观相邻性,只要小方格在几何位置上相邻(不管上下左右),它代表的最小项在逻辑上一定是相邻的。(2)对边相邻性,即与中心轴对称的左右两边和上下两边的小方格也具有相邻性。第23页,此课件共37页哦2.2.3用卡诺图表示逻辑函数1从真值表到卡诺图2从逻辑表达式到卡诺图(1)如果表达式为最小项表达式,则可直接填入卡诺图。(2)如表达式不是最小项表达式,但是“与或表达式”,可将其先化成最小项表达式,再填入卡诺图。也可直接填入。第24页,此课件共37页哦2.2.4 逻辑函数的卡诺图化简法 1卡诺图化简逻辑函数的
9、原理:(1)2个相邻的最小项结合,可以消去1个取值不同的变量而合并为l项。(2)4个相邻的最小项结合,可以消去2个取值不同的变量而合并为l项。(3)8个相邻的最小项结合,可以消去3个取值不同的变量而合并为l项。注:即合并消去n个变量,要2n个相邻最小项第25页,此课件共37页哦第26页,此课件共37页哦总之,2n个相邻的最小项结合,可以消去n个取值不同的变量而合并为l项。2用卡诺图合并最小项的原则(画圈的原则)(1)尽量画大圈,但每个圈内只能含有2n(n=0,1,2,3)个相邻项。要特别注意对边相邻性和四角相邻性。(2)圈的个数尽量少。(3)卡诺图中所有取值为1的方格均要被圈过,即不能漏下取值
10、为1的最小项。(4)在新画的包围圈中至少要含有1个未被圈过的为1的方格,否则该包围圈是多余的。第27页,此课件共37页哦3用卡诺图化简逻辑函数的步骤:(1)画出逻辑函数的卡诺图。(2)合并相邻的最小项,即根据前述原则画圈。(3)写出化简后的表达式。每一个圈写一个最简与项,规则是,取值为l的变量用原变量表示,取值为0的变量用反变量表示,将这些变量相与。然后将所有与项进行逻辑加,即得最简与或表达式第28页,此课件共37页哦例 用卡诺图化简逻辑函数:L(A,B,C,D)=m(0,2,3,4,6,7,10,11,13,14,15)解:(1)由表达式画出卡诺图。(2)画包围圈,合并最小项,得简化的与或表
11、达式:第29页,此课件共37页哦例4.8 某逻辑函数的真值表如表3所示,用卡诺图化简该逻辑函数。解:(1)由真值表画出卡诺图。(2)画包围圈合并最小项。有两种画圈的方法:(a):写出表达式:(b):写出表达式:第30页,此课件共37页哦通过这个例子可以看出,一个逻辑函数的真值表是唯一的,卡诺图也是唯一的,但化简结果有时不是唯一的。第31页,此课件共37页哦4卡诺图化简逻辑函数的另一种方法圈0法例4.9 已知逻辑函数的卡诺图如图所示,分别用“圈1法”和“圈0法”写出其最简与或式。解:(1)用圈1法画包围圈,得:第32页,此课件共37页哦(2)用圈0法画包围圈,得:第33页,此课件共37页哦5.具
12、有无关项的逻辑函数的化简1无关项在有些逻辑函数中,输入变量的某些取值组合不会出现,或者一旦出现,逻辑值可以是任意的。这样的取值组合所对应的最小项称为无关项、任意项或约束项。带有无关项的逻辑函数的最小项表达式为:L=m()+d()化简具有无关项的逻辑函数时,要充分利用无关项可以当0也可以当1的特点,尽量扩大卡诺圈,使逻辑函数更简。第34页,此课件共37页哦 例10:不考虑无关项时,表达式为:考虑无关项时,表达式为:第35页,此课件共37页哦注意:在考虑无关项时,哪些无关项当作1,哪些无关项当作0,要以尽量扩大卡诺圈、减少圈的个数,使逻辑函数更简为原则。第36页,此课件共37页哦2可用两种方法化简逻辑函数,公式法和卡诺图法。公式法是用逻辑代数的基本公式与规则进行化简,必须熟记基本公式和规则并具有一定的运算技巧和经验。卡诺图法是基于合并相邻最小项的原理进行化简的,特点是简单、直观,不易出错,有一定的步骤和方法可循。第37页,此课件共37页哦