《材料力学刘鸿文应力和应变分析强理论.pptx》由会员分享,可在线阅读,更多相关《材料力学刘鸿文应力和应变分析强理论.pptx(47页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 7-1 7-1 应力状态的概念应力状态的概念 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法 7-4 7-4 二向应力状态分析二向应力状态分析-n-n图解法图解法 7-5 7-5 三向应力状态三向应力状态 7-8 7-8 广义胡克定律广义胡克定律 7-11 7-11 四种常用强度理论四种常用强度理论第七章第七章 应力和应变分析应力和应变分析强度理论强度理论第1页/共47页低碳钢低碳钢 塑性材料拉伸时为什么会出现滑移线?塑性材料拉伸时为什么会出现滑移线?铸铸 铁铁问题的提出问题的提出71 应力状态的概念应力状态的概念目录第2页/共47页脆性材料扭转时为什么沿脆性材料扭转时为什么
2、沿4545螺旋面断开?螺旋面断开?低碳钢低碳钢铸铸 铁铁71 应力状态的概念应力状态的概念目录第3页/共47页4 横横截截面面上上正正应应力力分分析析和和切切应应力力分分析析的的结结果果表表明明:同同一一面面上上不不同同点点的的应应力力各各不不相相同同,此此即即应应力力的的点点的的概概念念。71 应力状态的概念应力状态的概念横力弯曲横力弯曲第4页/共47页5 直杆拉伸应力分析结果表明:即直杆拉伸应力分析结果表明:即使同一点不同方向面上的应力也是各使同一点不同方向面上的应力也是各不相同的,此即不相同的,此即应力的面的概念应力的面的概念。71 应力状态的概念应力状态的概念 直杆拉伸直杆拉伸第5页/
3、共47页F laS71 应力状态的概念应力状态的概念目录S S S S平面平面平面平面zMzT4321yx13第6页/共47页yxz 单元体上没有切应力的面称为单元体上没有切应力的面称为主平面主平面;主平面上的正应力;主平面上的正应力称为称为主应力,主应力,分别用分别用 表示,并且表示,并且该单元体称为该单元体称为主应力单元体。主应力单元体。71 应力状态的概念应力状态的概念目录第7页/共47页71 应力状态的概念应力状态的概念目录(1 1)单向应力状态:三个主应力中只有一个不为零)单向应力状态:三个主应力中只有一个不为零(2 2)平面应力状态:三个主应力中有两个不为零)平面应力状态:三个主应
4、力中有两个不为零(3 3)空间应力状态:三个主应力都不等于零)空间应力状态:三个主应力都不等于零平面应力状态和空间应力状态统称为平面应力状态和空间应力状态统称为复杂应力状态复杂应力状态第8页/共47页9Fl/2l/2S平面平面71 应力状态的概念应力状态的概念S平面平面543211232t t第9页/共47页1.1.斜截面上的应力斜截面上的应力d dA An nt t 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法目录x xy y第10页/共47页列平衡方程列平衡方程d dA An nt t目录 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法第11页/共47页利
5、用三角函数公式利用三角函数公式并注意到并注意到 化简得化简得目录 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法第12页/共47页2.2.正负号规则正负号规则正应力:正应力:正应力:正应力:拉为正;压为负拉为正;压为负切应力:切应力:切应力:切应力:使微元顺时针方向使微元顺时针方向转动为正;反之为负。转动为正;反之为负。角:角:角:角:由由x x 轴正向逆时针转轴正向逆时针转到斜截面外法线时为正;反到斜截面外法线时为正;反之为负。之为负。ntx目录 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法x xy y第13页/共47页确定正应力极值确定正应力极值设设0 0
6、 时,上式值为零,即时,上式值为零,即3.正正应力极值和方向应力极值和方向即即0 0 时,切应力为零时,切应力为零目录 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法第14页/共47页 由上式可以确定出两个相互垂直的平面,分别由上式可以确定出两个相互垂直的平面,分别为最大正应力和最小正应力(主应力)所在平面。为最大正应力和最小正应力(主应力)所在平面。所以,最大和最小正应力分别为:所以,最大和最小正应力分别为:主应力主应力按代数值按代数值排序:排序:1 1 2 2 3 3目录 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法第15页/共47页试求试求(1 1)斜面
7、上的应力;斜面上的应力;(2 2)主应力、主平面;)主应力、主平面;(3 3)绘出主应力单元体。)绘出主应力单元体。例题例题1 1:一点处的平面应力状态如图所示。一点处的平面应力状态如图所示。已知已知目录 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法第16页/共47页解:解:(1 1)斜面上的应力斜面上的应力 目录 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法第17页/共47页(2 2)主应力、主平面)主应力、主平面 目录 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法第18页/共47页主平面的方位:主平面的方位:代入代入 表达式可知表达式可
8、知主应力主应力 方向:方向:主应力主应力 方向:方向:目录 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法第19页/共47页(3 3)主应力单元体:)主应力单元体:目录 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法第20页/共47页21 7-3 7-3 二向应力状态分析二向应力状态分析-解析法解析法此现象称为纯剪切此现象称为纯剪切 纯剪切应力状态纯剪切应力状态或或第21页/共47页这个方程恰好表示一个圆,这个圆称为应力圆这个方程恰好表示一个圆,这个圆称为应力圆 7-4 7-4 二向应力状态分析二向应力状态分析-图解法图解法目录第22页/共47页RC1.1.应力
9、圆:应力圆:目录 7-4 7-4 二向应力状态分析二向应力状态分析-图解法图解法第23页/共47页2.2.应力圆的画法应力圆的画法D(s sx,t txy)D/(s sy,t tyx)cRADx xy y目录 7-4 7-4 二向应力状态分析二向应力状态分析-图解法图解法第24页/共47页点面对应点面对应应力圆上某一点的坐标值对应着应力圆上某一点的坐标值对应着 微元某一截面上的正应力和切应力微元某一截面上的正应力和切应力3 3、几种对应关系、几种对应关系D(s sx,t txy)D/(s sy,t tyx)cx xy yHn nH目录 7-4 7-4 二向应力状态分析二向应力状态分析-图解法图
10、解法第25页/共47页定义定义三个主应力都不为零的应力状态三个主应力都不为零的应力状态 7-5 7-5 三向应力状态三向应力状态目录第26页/共47页由三向应力圆可以看出:由三向应力圆可以看出:结论:结论:代表单元体任意斜代表单元体任意斜截面上应力的点,截面上应力的点,必定在三个应力圆必定在三个应力圆圆周上或圆内。圆周上或圆内。2130 0 7-5 7-5 三向应力状态三向应力状态目录第27页/共47页1.1.基本变形时的胡克定律基本变形时的胡克定律yx1 1)轴向拉压胡克定律)轴向拉压胡克定律横向变形横向变形2 2)纯剪切胡克定律)纯剪切胡克定律 7-8 7-8 广义胡克定律广义胡克定律目录
11、第28页/共47页2 2、三向应力状态的广义胡克定律、三向应力状态的广义胡克定律叠加法叠加法 7-8 7-8 广义胡克定律广义胡克定律目录=+第29页/共47页 7-8 7-8 广义胡克定律广义胡克定律目录第30页/共47页3 3、广义胡克定律的一般形式、广义胡克定律的一般形式 7-8 7-8 广义胡克定律广义胡克定律目录第31页/共47页(拉压)(拉压)(弯曲)(弯曲)(正应力强度条件)(正应力强度条件)(弯曲)(弯曲)(扭转)(扭转)(切应力强度条件)(切应力强度条件)杆件基本变形下的强度条件杆件基本变形下的强度条件7-11 7-11 四种常用强度理论四种常用强度理论目录第32页/共47页
12、满足满足是否强度就没有问题了?是否强度就没有问题了?目录7-11 7-11 四种常用强度理论四种常用强度理论第33页/共47页强度理论:强度理论:人们根据大量的破坏现象,通过判断推理、概人们根据大量的破坏现象,通过判断推理、概括,提出了种种关于破坏原因的假说,找出引起破括,提出了种种关于破坏原因的假说,找出引起破坏的主要因素,经过实践检验,不断完善,在一定坏的主要因素,经过实践检验,不断完善,在一定范围与实际相符合,上升为理论。范围与实际相符合,上升为理论。为了建立复杂应力状态下的强度条件,而提出为了建立复杂应力状态下的强度条件,而提出的关于材料破坏原因的假设及计算方法。的关于材料破坏原因的假
13、设及计算方法。目录7-11 7-11 四种常用强度理论四种常用强度理论第34页/共47页构件由于强度不足将引发两种失效形式构件由于强度不足将引发两种失效形式(1)(1)脆性断裂:材料无明显的塑性变形即发生断裂,脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。如铸铁受拉、扭,低温脆断等。关于关于屈服的强度理论:屈服的强度理论:最大切应力理论和形状改变比能理论最大切应力理论和形状改变比能理论(2)(2)塑性屈服(流动):材料破坏前发生显著的塑性塑性屈服(流动):材料破坏前发生显著的
14、塑性变形,破坏断面粒子较光滑,且多发生在最大剪应力面变形,破坏断面粒子较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。上,例如低碳钢拉、扭,铸铁压。关于关于断裂的强度理论:断裂的强度理论:最大拉应力理论和最大伸长线应变理论最大拉应力理论和最大伸长线应变理论目录7-11 7-11 四种常用强度理论四种常用强度理论第35页/共47页1.1.最大拉应力理论最大拉应力理论(第一强度理论)(第一强度理论)构件危险点的最大拉应力构件危险点的最大拉应力 极限拉应力,由单拉实验测得极限拉应力,由单拉实验测得目录7-11 7-11 四种常用强度理论四种常用强度理论 无论材料处于什么应力状态无论材料处
15、于什么应力状态,只要发生脆性断裂只要发生脆性断裂,都是由于微元内的最大拉应力达到简单拉伸时的破都是由于微元内的最大拉应力达到简单拉伸时的破坏拉应力数值。坏拉应力数值。第36页/共47页断裂条件断裂条件强度条件强度条件最大拉应力理论(第一强度理论)最大拉应力理论(第一强度理论)铸铁拉伸铸铁拉伸铸铁扭转铸铁扭转目录7-11 7-11 四种常用强度理论四种常用强度理论第37页/共47页2.2.最大伸长拉应变理论最大伸长拉应变理论(第二强度理论)(第二强度理论)无论材料处于什么应力状态无论材料处于什么应力状态,只要发生脆性断裂只要发生脆性断裂,都是由于微元内的最大拉应变(线变形)达到简单都是由于微元内
16、的最大拉应变(线变形)达到简单拉伸时的破坏伸长应变数值。拉伸时的破坏伸长应变数值。构件危险点的最大伸长线应变构件危险点的最大伸长线应变 极限伸长线应变,由单向拉伸实验测得极限伸长线应变,由单向拉伸实验测得目录7-11 7-11 四种常用强度理论四种常用强度理论第38页/共47页实验表明:实验表明:此理论对于一拉一压的二向应力状态的脆此理论对于一拉一压的二向应力状态的脆性材料的断裂较符合,如铸铁受拉压比第一强度理论性材料的断裂较符合,如铸铁受拉压比第一强度理论更接近实际情况。更接近实际情况。强度条件强度条件最大伸长拉应变理论(第二强度理论)最大伸长拉应变理论(第二强度理论)断裂条件断裂条件即即目
17、录7-11 7-11 四种常用强度理论四种常用强度理论第39页/共47页 无论材料处于什么应力状态无论材料处于什么应力状态,只要发生屈服只要发生屈服,都是都是由于微元内的最大切应力达到了某一极限值。由于微元内的最大切应力达到了某一极限值。3.3.最大切应力理论最大切应力理论(第三强度理论)(第三强度理论)构件危险点的最大切应力构件危险点的最大切应力 极限切应力,由单向拉伸实验测得极限切应力,由单向拉伸实验测得目录7-11 7-11 四种常用强度理论四种常用强度理论第40页/共47页屈服条件屈服条件强度条件强度条件最大切应力理论(第三强度理论)最大切应力理论(第三强度理论)低碳钢拉伸低碳钢拉伸低
18、碳钢扭转低碳钢扭转目录7-11 7-11 四种常用强度理论四种常用强度理论第41页/共47页实验表明:实验表明:此理论对于塑性材料的屈服破坏能够得到此理论对于塑性材料的屈服破坏能够得到较为满意的解释。并能解释材料在三向均压下不发生较为满意的解释。并能解释材料在三向均压下不发生塑性变形或断裂的事实。塑性变形或断裂的事实。局限性:局限性:2 2、不能解释三向均拉下可能发生断裂的现象。、不能解释三向均拉下可能发生断裂的现象。1 1、未考虑、未考虑 的影响,试验证实最大影响达的影响,试验证实最大影响达15%15%。最大切应力理论(第三强度理论)最大切应力理论(第三强度理论)目录7-11 7-11 四种
19、常用强度理论四种常用强度理论第42页/共47页 无论材料处于什么应力状态无论材料处于什么应力状态,只要发生屈服只要发生屈服,都是都是由于微元的最大形状改变比能达到一个极限值。由于微元的最大形状改变比能达到一个极限值。4.4.形状改变比形状改变比能理论能理论(第四强度理论)(第四强度理论)构件危险点的形状改变比能构件危险点的形状改变比能 形状改变比能的极限值,由单拉实验测得形状改变比能的极限值,由单拉实验测得目录7-11 7-11 四种常用强度理论四种常用强度理论第43页/共47页屈服条件屈服条件强度条件强度条件形状改变比形状改变比能理论(第四强度理论)能理论(第四强度理论)实验表明:实验表明:
20、对塑性材料,此理论比第三强度理对塑性材料,此理论比第三强度理论更符合试验结果,在工程中得到了广泛应用。论更符合试验结果,在工程中得到了广泛应用。目录7-11 7-11 四种常用强度理论四种常用强度理论第44页/共47页强度理论的统一表达式:强度理论的统一表达式:相当应力相当应力目录7-11 7-11 四种常用强度理论四种常用强度理论第45页/共47页467-11 7-11 四种常用强度理论四种常用强度理论例题例题 已知:已知:和和。试写出。试写出最大切应力最大切应力 准则准则和和形状改变比能准则形状改变比能准则的表达式。的表达式。解:解:首先确定主应力首先确定主应力第46页/共47页47谢谢您的观看!第47页/共47页