《2022-2023学年河北省保定市定兴县达标名校中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年河北省保定市定兴县达标名校中考数学猜题卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知关于x的不等式组12x+b1的解满足0x2,则b满足的条件是()A0b2B3b1C3b1Db=1或32如图,直线AB、CD相交于点O,EOCD,下列说法错误的是( )AAODBOCBAOEBOD90CAOCAOEDAODBOD1803已知,C是线段AB的黄金分割点,ACBC,若AB=2,
2、则BC=()A3B(+1)C1D(1)4一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的()A平均数B众数C中位数D方差5如图,已知O的半径为5,AB是O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为()A1B2C3D86一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()ABCD7将抛物线向右平移 1 个单
3、位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )ABCD8的倒数是( )AB3CD9式子有意义的x的取值范围是( )A且x1Bx1CD且x110如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径ADCE运动,则APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30,那么铁塔的高度AB=_米12如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AEEF,C
4、FEF,则正方形ABCD的边长为_13二次函数y=(a-1)x2-x+a2-1的图象经过原点,则a的值为_14分解因式_15已知是一元二次方程的一个根,则方程的另一个根是_16如图,在RtABC中,ACB90,ACBC6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将PQC沿BC翻折,点P的对应点为点P,设Q点运动的时间为t秒,若四边形QPCP为菱形,则t的值为_17在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个
5、单位依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_三、解答题(共7小题,满分69分)18(10分)小明遇到这样一个问题:已知:. 求证:.经过思考,小明的证明过程如下:,.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.19(5分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和
6、健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表对雾霾了解程度的统计表 对雾霾的了解程度百分比A非常了解5%B比较了解mC基本了解45%D不了解n请结合统计图表,回答下列问题:统计表中:m ,n ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?20(8分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.21(10分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴
7、交于点M,直线AB与直线OD交于点N(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且OMB=ONA时,求a的值22(10分)在矩形ABCD中,AB6,AD8,点E是边AD上一点,EMEC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项如图1,求证:ANEDCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长23(12分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BFEF,将线段EF绕点F顺时针旋转90得FG,
8、过点B作FG的平行线,交DA的延长线于点N,连接NG求证:BE2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明24(14分)随着社会经济的发展,汽车逐渐走入平常百姓家某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在2040万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图请结合图中信息解答下列问题:(1)调查样本人数为_,样本中B类人数百分比是_,其所在扇形统计图中的圆心角度数是_;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,
9、现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据不等式的性质得出x的解集,进而解答即可【详解】-12x+b1,关于x的不等式组-12x+b1的解满足0x2,解得:-3b-1,故选C【点睛】此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集2、C【解析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得【详解】A、AOD与BOC是对顶角,所以AOD=BOC,此选项正确;B、由EOCD知DOE=90,所以AOE+BOD=90,此选项正确;C、AOC与BOD是对顶角,所以A
10、OC=BOD,此选项错误;D、AOD与BOD是邻补角,所以AOD+BOD=180,此选项正确;故选C【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义3、C【解析】根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值【详解】解:由于C为线段AB=2的黄金分割点,且ACBC,BC为较长线段;则BC=2=-1故答案为:-1【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍4、C【解析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析【详解】
11、由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少故选C【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用5、B【解析】连接OP、OA,根据垂径定理求出AQ,根据勾股定理求出OQ,计算即可【详解】解:由题意得,当点P为劣弧AB的中点时,PQ最小,连接OP、OA,由垂径定理得,点Q在OP上,AQ=AB=4,在RtAOB中,OQ=3,PQ=OP-OQ=2,故选:B【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理
12、的推论是解题的关键6、B【解析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.【点睛】掌握分类讨论的方法是本题解题的关键.7、A【解析】根据二次函数的平移规律即可得出【详解】解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为故答案为:A【点睛】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律8、A【解析】解:的倒数是故选A
13、【点睛】本题考查倒数,掌握概念正确计算是解题关键9、A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且故选A10、B【解析】由题意可知,当时,;当时,;当时,.时,;时,.结合函数解析式,可知选项B正确.【点睛】考点:1动点问题的函数图象;2三角形的面积二、填空题(共7小题,每小题3分,满分21分)11、20【解析】在RtABC中,直接利用tanACB=tan30=即可.【详解】在RtABC中,tanACB=tan30=,BC=60,解得AB=20.故答案为20.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用
14、.12、 【解析】分析:连接AC,交EF于点M,可证明AEMCMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB详解:连接AC,交EF于点M,AE丄EF,EF丄FC,E=F=90,AME=CMF, AEMCFM,AE=1,EF=FC=3,EM=,FM=,在RtAEM中,AM2=AE2+EM2=1+=,解得AM=,在RtFCM中,CM2=CF2+FM2=9+=,解得CM=,AC=AM+CM=5,在RtABC中,AB=BC,AB2+BC2=AC2=25,AB=,即正方形的边长为故答案为:点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成
15、比例求得AC的长是解题的关键,注意勾股定理的应用13、-1【解析】将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值【详解】解:二次函数y=(a-1)x2-x+a2-1 的图象经过原点, a2-1=2, a=1, a-12, a1, a的值为-1 故答案为-1【点睛】本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=214、(x+y+z)(xyz)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解本题后三项可以为一组组成完全平方式,再用平方差公式即可【详解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z
16、)(x-y-z)故答案为(x+y+z)(x-y-z)【点睛】本题考查了用分组分解法进行因式分解难点是采用两两分组还是三一分组本题后三项可组成完全平方公式,可把后三项分为一组15、【解析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可【详解】设方程的另一根为x1,又x=2-,由根与系数关系,得x1+2-=4,解得x1=2+故答案为:【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解16、1【解析】作PDBC于D,PEAC于E,如图,AP=t,BQ=tcm,(0t6)C=90,AC=BC=6c
17、m,ABC为直角三角形,A=B=45,APE和PBD为等腰直角三角形,PE=AE=AP=tcm,BD=PD,CE=ACAE=(6t)cm,四边形PECD为矩形,PD=EC=(6t)cm,BD=(6t)cm,QD=BDBQ=(61t)cm,在RtPCE中,PC1=PE1+CE1=t1+(6t)1,在RtPDQ中,PQ1=PD1+DQ1=(6t)1+(61t)1,四边形QPCP为菱形,PQ=PC,t1+(6t)1=(6t)1+(61t)1,t1=1,t1=6(舍去),t的值为1故答案为1【点睛】此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .17、(672,2019)【解析】
18、分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.详解:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,20183=6722,走完第2018步,为第673个循环组的第2步,所处位置的横坐标为672,纵坐标为6723+3=2019,棋子所处位置的坐标是(672,2019)故答案为:(672,2019)点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.三、解答题(共7小题,满分
19、69分)18、证明见解析【解析】解:,.是一元二次方程的根. ,.19、(1)20;15%;35%;(2)见解析;(3)126【解析】(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)求出D的学生人数,然后补全统计图即可;(3)用D的百分比乘360计算即可得解【详解】解:(1)非常了解的人数为20,60400100%=15%,15%15%45%=35%,故答案为20;15%;35%;(2)D等级的人数为:40035%=140,补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:36035%=126【点睛】本题考查
20、的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、1【解析】解:取时,原式21、(1)D(2,2);(2);(3)【解析】(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AEOD,
21、可证AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tanOMB=tanONA,得到比例式,代入数值即可求得a的值.【详解】(1)当x=0时,A点的坐标为(0,2)顶点B的坐标为:(1,2-a),对称轴为x= 1,点A与点D关于对称轴对称D点的坐标为:(2,2)(2)设直线BD的解析式为:y=kx+b把B(1,2-a)D(2,2)代入得: ,解得:直线BD的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=M点的坐标为:(3)由D(2,2)可得:直线OD解析式为:y=x设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得:
22、解得:直线AB的解析式为y= -ax+2联立成方程组: ,解得:N点的坐标为:()ON=()过A点作AEOD于E点,则AOE为等腰直角三角形.OA=2OE=AE=,EN=ON-OE=()-=)M,C(1,0), B(1,2-a)MC=,BE=2-aOMB=ONAtanOMB=tanONA,即解得:a=或抛物线开口向下,故a0, a=舍去,【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.22、(1)见解析;(2);(1)DE的长分别为或1【解析】(1)由比例中项知,据此可证AMEA
23、EN得AEMANE,再证AEMDCE可得答案;(2)先证ANEEAC,结合ANEDCE得DCEEAC,从而知,据此求得AE8,由(1)得AEMDCE,据此知,求得AM,由求得MN;(1)分ENMEAC和ENMECA两种情况分别求解可得【详解】解:(1)AE是AM和AN的比例中项,AA,AMEAEN, AEMANE,D90,DCEDEC90,EMBC,AEMDEC90,AEMDCE,ANEDCE;(2)AC与NE互相垂直,EACAEN90,BAC90,ANEAEN90,ANEEAC,由(1)得ANEDCE,DCEEAC,tanDCEtanDAC,DCAB6,AD8,DE,AE8,由(1)得AEM
24、DCE,tanAEMtanDCE,AM,AN,MN;(1)NMEMAEAEM,AECDDCE,又MAED90,由(1)得AEMDCE,AECNME,当AEC与以点E、M、N为顶点所组成的三角形相似时ENMEAC,如图2, ANEEAC,由(2)得:DE;ENMECA,如图1,过点E作EHAC,垂足为点H,由(1)得ANEDCE,ECADCE,HEDE,又tanHAE,设DE1x,则HE1x,AH4x,AE5x,又AEDEAD,5x1x8,解得x1,DE1x1,综上所述,DE的长分别为或1【点睛】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点23、(1
25、)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】(1)过F作FHBE于点H,可证明四边形BCFH为矩形,可得到BHCF,且H为BE中点,可得BE2CF;(2)由条件可证明ABNHFE,可得BNEF,可得到BNGF,且BNFG,可证得四边形BFGN为菱形【详解】(1)证明:过F作FHBE于H点,在四边形BHFC中,BHFCBHBCF90,所以四边形BHFC为矩形,CFBH,BFEF,FHBE,H为BE中点,BE2BH,BE2CF;(2)四边形BFGN是菱形证明:将线段EF绕点F顺时针旋转90得FG,EFGF,GFE90,EFHBFHGFB90BNFG,NBFGFB180,NBAABCC
26、BFGFB180,ABC90,NBACBFGFB1809090,由BHFC是矩形可得BCHF,BFHCBF,EFH90GFBBFH90GFBCBFNBA,由BHFC是矩形可得HFBC,BCAB,HFAB,在ABN和HFE中,ABNHFE,NBEF,EFGF,NBGF,又NBGF,NBFG是平行四边形,EFBF,NBBF,平行四边NBFG是菱形点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键在(2)中证得ABNHFE是解题的关键24、(1)50,20%,72(2)图形见解析;(3)选出的2人来自不同科室的概率=【解析】试题分析:
27、(1)根据调查样本人数=A类的人数除以对应的百分比样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比360(2)先求出样本中B类人数,再画图(3)画树状图并求出选出的2人来自不同科室的概率试题解析:(1)调查样本人数为48%=50(人),样本中B类人数百分比(504288)50=20%,B类人数所在扇形统计图中的圆心角度数是20%360=72;(2)如图,样本中B类人数=504288=10(人);(3)画树状图为:共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,所以选出的2人来自不同科室的概率=考点:1.条形统计图2.扇形统计图3.列表法与树状图法