《2022-2023学年黑龙江省七台河市勃利县达标名校中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年黑龙江省七台河市勃利县达标名校中考数学考前最后一卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示,将含有30角的三角板的直角顶点放在相互平行的两条直线其中一条上,若1=35,则2的度数为()A10B20C25D302如图,在矩形ABCD中,AD=1,A
2、B1,AG平分BAD,分别过点B,C作BEAG 于点E,CFAG于点F,则AEGF的值为( )A1BCD3要使式子有意义,的取值范围是( )AB且C. 或D 且4计算4+(2)25=()A16 B16 C20 D245的算术平方根是()A4B4C2D26如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A1mBmC3mDm7有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛某同学知道自己的分数后,要判断自己能否进入决
3、赛,他只需知道这15位同学的()A平均数B中位数C众数D方差8如图,ABBD,CDBD,垂足分别为B、D,AC和BD相交于点E,EFBD垂足为F则下列结论错误的是()ABCD9在同一平面内,下列说法:过两点有且只有一条直线;两条不相同的直线有且只有一个公共点;经过直线外一点有且只有一条直线与已知直线垂直;经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A1个B2个C3个D4个10如图,OAC和BAD都是等腰直角三角形,ACO=ADB=90,反比例函数y=在第一象限的图象经过点B,则OAC与BAD的面积之差SOACSBAD为()A36B12C6D3二、填空题(共7小题,每小题
4、3分,满分21分)11已知 a、b 是方程 x22x10 的两个根,则 a2a+b 的值是_12如图,将ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上(1)计算ABC的周长等于_(2)点P、点Q(不与ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC当AQPC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明)_13的绝对值是_14如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_15已知一次函数y=kx+2k+3的图象与y轴
5、的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为_16已知二次函数yax2+bx+c中,函数y与自变量x的部分对应值如表所示:x54321y83010当y3时,x的取值范围是_17如图,数轴上点A所表示的实数是_三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系xOy中,一次函数ykx+b(k0)的图象与反比例函数y(n0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,1),ADx轴,且AD3,tanAOD求该反比例函数和一次函数的解析式;求AOB的面积;点E是x轴上一点,且AOE是等腰三角形,请直接写出所有符合条件的E点
6、的坐标19(5分)计算:20(8分)如图,已知ABC(1)请用直尺和圆规作出A的平分线AD(不要求写作法,但要保留作图痕迹);(2)在(1)的条件下,若AB=AC,B=70,求BAD的度数21(10分)为了弘扬学生爱国主义精神,充分展现新时期青少年良好的思想道德素质和精神风貌,丰富学生的校园生活,陶冶师生的情操,某校举办了“中国梦爱国情成才志”中华经典诗文诵读比赛九(1)班通过内部初选,选出了丽丽和张强两位同学,但学校规定每班只有1个名额,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:在A、B两个不透明的箱子分别放入黄色和白色两种除颜色外均相同的球,其中A箱中
7、放置3个黄球和2个白球;B箱中放置1个黄球,3个白球,丽丽从A箱中摸一个球,张强从B箱摸一个球进行试验,若两人摸出的两球都是黄色,则丽丽去;若两人摸出的两球都是白色,则张强去;若两人摸出球颜色不一样,则放回重复以上动作,直到分出胜负为止根据以上规则回答下列问题:(1)求一次性摸出一个黄球和一个白球的概率;(2)判断该游戏是否公平?并说明理由22(10分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与
8、直线AB平行的道路EF行走,走到点C处,测得ACF=45,再向前走300米到点D处,测得BDF=60若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)23(12分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?24(14分)我国古代数学著作增删算法统宗记载“官兵分布”问题:“一千官军一千
9、布,一官四疋无零数,四军才分布一疋,请问官军多少数”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹问官和兵各几人?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】分析:如图,延长AB交CF于E,ACB=90,A=30,ABC=601=35,AEC=ABC1=25GHEF,2=AEC=25故选C2、D【解析】设AE=x,则AB=x,由矩形的性质得出BAD=D=90,CD=AB,证明ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.【详解】设AE=x,四边形ABCD是
10、矩形,BAD=D=90,CD=AB,AG平分BAD,DAG=45,ADG是等腰直角三角形,DG=AD=1,AG=AD=,同理:BE=AE=x, CD=AB=x,CG=CD-DG=x -1,同理: CG=GF,FG= ,AE-GF=x-(x-)=.故选D.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.3、D【解析】根据二次根式和分式有意义的条件计算即可.【详解】解: 有意义,a+20且a0,解得a-2且a0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开
11、方数大于等于0,分式有意义的条件是分母不为0.4、D【解析】分析:根据有理数的乘方、乘法和加法可以解答本题详解:4+(2)25=4+45=4+20=24,故选:D点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法5、C【解析】先求出的值,然后再利用算术平方根定义计算即可得到结果【详解】4,4的算术平方根是2,所以的算术平方根是2,故选C【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键6、B【解析】由AGE=CHE=90,AEG=CEH可证明AEGCEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.【详解】由题意得:FB=EG=2m,AG
12、=ABBG=61.5=4.5m,CH=CDDH=91.5=7.5m,AGEH,CHEH,AGE=CHE=90,AEG=CEH,AEGCEH, = ,即 =,解得:GH=,则BD=GH=m,故选:B【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.7、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的
13、分数的中位数故选B【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用8、A【解析】利用平行线的性质以及相似三角形的性质一一判断即可【详解】解:ABBD,CDBD,EFBD,ABCDEFABEDCE,故选项B正确,EFAB,故选项C,D正确,故选:A【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型9、C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解【详解】解
14、:在同一平面内,过两点有且只有一条直线,故正确;两条不相同的直线相交有且只有一个公共点,平行没有公共点,故错误;在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故正确;经过直线外一点有且只有一条直线与已知直线平行,故正确,综上所述,正确的有共3个,故选C【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键10、D【解析】设OAC和BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论解:设OAC和BAD的直角边长分别为a、b,则点B
15、的坐标为(a+b,ab)点B在反比例函数的第一象限图象上,(a+b)(ab)=a2b2=1SOACSBAD=a2b2=(a2b2)=1=2故选D点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2b2的值解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论【详解】a、b是方程x2-2x-1=0的两个根,a2-2a=1,a+b=2,a2-a
16、+b=a2-2a+(a+b)=1+2=1故答案为1【点睛】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键12、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P 【解析】(1)利用勾股定理求出AB,从而得到ABC的周长;(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.【详解】解:(1)AC=3,BC=4,C=90,根据勾股定理得AB=5,ABC的周长=5+4+3=12.(2)取格点D,E,F,G,H
17、,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.【点睛】本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.13、 【解析】绝对值是指一个数在数轴上所对应点到原点的距离,用“|”来表示|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.【详解】的绝对值是|=【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.14、【解析】根据图示可得:长方形的长可以表示为x+2
18、y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可【详解】根据图示可得,故答案是:【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽15、-2【解析】试题分析:根据题意可得2k+32,k2,解得k2因k为整数,所以k=2考点:一次函数图象与系数的关系16、x4或x1【解析】观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y-3时,x的取值范围即可【详解】由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,且x=1时,y=
19、-3,所以,y-3时,x的取值范围为x-4或x1故答案为x-4或x1【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键17、【解析】A点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可.【详解】解:直角三角形斜边长度为,则A点到-1的距离等于,则A点所表示的数为:1+【点睛】本题考查了利用勾股定理求解数轴上点所表示的数.三、解答题(共7小题,满分69分)18、(1)y,yx+2;(2)6;(3)当点E(4,0)或(,0)或(,0)或(,0)时,AOE是等腰三角形【解析】(1)利用待定系数法,即可得到反比例
20、函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC4,即可得出AOB的面积436;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可【详解】(1)如图,在RtOAD中,ADO90,tanAOD,AD3,OD2,A(2,3),把A(2,3)代入y,考点:n3(2)6,所以反比例函数解析式为:y,把B(m,1)代入y,得:m6,把A(2,3),B(6,1)分别代入ykx+b,得:,解得:,所以一次函数解析式为:yx+2;(2)当y0时, x+20,解得:x4,则C(4,0),所以;(3)当OE3OE2AO,即E2(,0),E3(,0);当OAAE1时,得到OE12O
21、D4,即E1(4,0);当AE4OE4时,由A(2,3),O(0,0),得到直线AO解析式为yx,中点坐标为(1,1.5),令y0,得到y,即E4(,0),综上,当点E(4,0)或(,0)或(,0)或(,0)时,AOE是等腰三角形【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键19、.【解析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案【详解】解:原式= = 故答案为 【点睛】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键20、(1)见解析;(2)20;【解析】(1)尺规作一个角的平分线是基本尺规作图,根据作
22、图步骤即可画图;(2)运用等腰三角形的性质再根据角平分线的定义计算出BAD的度数即可.【详解】(1)如图,AD为所求;(2)AB=AC,AD平分BAC,ADBC,BDA=90,BAD=90B=9070=20【点睛】考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.21、 (1);(2)不公平,理由见解析【解析】(1)画树状图列出所有等可能结果数,找到摸出一个黄球和一个白球的结果数,根据概率公式可得答案;(2)结合(1)种树状图根据概率公式计算出两人获胜的概率,比较大小即可判断【详解】(1)画树状图如下:由树状图可知共有20种等可能结果,其中一次性摸出一个黄球和一个白球的有
23、11种结果,一次性摸出一个黄球和一个白球的概率为;(2)不公平,由(1)种树状图可知,丽丽去的概率为,张强去的概率为=,该游戏不公平【点睛】本题考查了列表法与树状图法,解题的关键是根据题意画出树状图.22、215.6米【解析】过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点,根据RtACM和三角函数求出CM、DN,然后根据即可求出A、B两点间的距离.【详解】解:过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点在RtACM中,AM=CM=200米,又CD=300米,所以米,在RtBDN中,BDF=60,BN=200米米,米即A,B两点之间的距离约为215.6米
24、【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.23、(1);(2)80米/分;(3)6分钟【解析】(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程时间,计算求值即可,(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案【详解】(1)根据题意得:设线段AB的表达式为:y=kx+b (4x16),把(4,240),(1
25、6,0)代入得:,解得:,即线段AB的表达式为:y= -20x+320 (4x16),(2)又线段OA可知:甲的速度为:=60(米/分),乙的步行速度为:=80(米/分),答:乙的步行速度为80米/分,(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)60=960(米),与终点的距离为:2400-960=1440(米),相遇后,到达终点甲所用的时间为:=24(分),相遇后,到达终点乙所用的时间为:=18(分),24-18=6(分),答:乙比甲早6分钟到达终点【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键24、官有200人,兵有800人【解析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论【详解】解:设官有x人,兵有y人,依题意,得: ,解得: 答:官有200人,兵有800人【点睛】本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.