《2022-2023学年福建省莆田市涵江区中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省莆田市涵江区中考三模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1某城市几条道路的位置关系如图所示,已知ABCD,AE与AB的夹角为48,若CF与EF的长度相等,则C的度数为()A48B40C30D242下列各类数中,与数轴
2、上的点存在一一对应关系的是()A有理数 B实数 C分数 D整数3下列计算中正确的是()Ax2+x2=x4Bx6x3=x2C(x3)2=x6Dx-1=x4李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时)22.533.54学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( )A众数是8B中位数是3C平均数是3D方差是0.345二次函数(a0)的图象如图所示,则下列命题中正确的是()Aa bcB一次函数y=ax +c的图象不经第四象限Cm(am+b)+ba(m是任意实数)D3b+2c06在3,0,2, 四个数中,最小的
3、数是( )A3B0C2D7在,,则的值为( )ABCD8运用乘法公式计算(4+x)(4x)的结果是()Ax216B16x2C168x+x2D8x29如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则DEF的面积与BAF的面积之比为( )A3:4B9:16C9:1D3:110下列各数中,比1大1的是()A0 B1 C2 D3二、填空题(本大题共6个小题,每小题3分,共18分)11如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(2,2),则k的值为_12科学家发现,距离地球2540000光年
4、之遥的仙女星系正在向银河系靠近其中2540000用科学记数法表示为_13如图,数轴上点A所表示的实数是_14如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则BDM的周长的最小值为_15比较大小:_116将一张长方形纸片折叠成如图所示的形状,若DBC=56,则1=_三、解答题(共8题,共72分)17(8分)已知:如图,在ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且AGE=CGN.(1)求证:四边形ENFM为平
5、行四边形;(2)当四边形ENFM为矩形时,求证:BE=BN.18(8分)如图,在中,ABAC,点D是BC的中点,DEAB于点E,DFAC于点F. (1)EDB_(用含的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.根据条件补全图形;写出DM与DN的数量关系并证明;用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.19(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离
6、是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.40.67,cos42.40.74,tan42.40.905,sin45.50.71,cos45.50.70,tan45.51.02)求发射台与雷达站之间的距离;求这枚火箭从到的平均速度是多少(结果精确到0.01)?20(8分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图请根据图中提供的信息,回答下列问题:扇形统计图中a的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计
7、“活动时间不少于5天”的大约有多少人?21(8分)已知:如图.D是的边上一点,交于点M,.(1)求证:;(2)若,试判断四边形的形状,并说明理由.22(10分)(2013年四川绵阳12分)如图,AB是O的直径,C是半圆O上的一点,AC平分DAB,ADCD,垂足为D,AD交O于E,连接CE(1)判断CD与O的位置关系,并证明你的结论;(2)若E是的中点,O的半径为1,求图中阴影部分的面积23(12分)已知ABC内接于O,AD平分BAC(1)如图1,求证:;(2)如图2,当BC为直径时,作BEAD于点E,CFAD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交O于点G,连接OE
8、,若EF=2EG,AC=2,求OE的长24阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P求作:过点P的直线m,使得ml小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE所以直线PE就是所求作的直线m老师说:“小东的作法是正确的”请回答:小东的作图依据是_参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】解:ABCD,1=BAE=48CF=EF,C
9、=E1=C+E,C=1=48=24故选D点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等2、B【解析】根据实数与数轴上的点存在一一对应关系解答【详解】实数与数轴上的点存在一一对应关系,故选:B【点睛】本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.3、C【解析】根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【详解】A. x2+x2=2x2 ,故不正确; B. x6x
10、3=x3 ,故不正确; C. (x3)2=x6 ,故正确; D. x1=,故不正确;故选C.【点睛】本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.4、B【解析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、
11、平均数=,所以此选项不正确;D、S2=(23.35)2+2(2.53.35)2+8(33.35)2+6(3.53.35)2+3(43.35)2=0.2825,所以此选项不正确;故选B【点睛】本题考查方差;加权平均数;中位数;众数5、D【解析】解:A由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由x=1,得出=1,故b0,b=2a,则bac,故此选项错误;Ba0,c0,一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C当x=1时,y最小,即abc最小,故abcam2+bm+c,即m(am+b)+ba,故此选项错误;D由图象可知x=1,a+b+c0,对称轴x=1,
12、当x=1,y0,当x=3时,y0,即9a3b+c0+得10a2b+2c0,b=2a,得出3b+2c0,故选项正确;故选D点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值6、C【解析】根据比较实数大小的方法进行比较即可根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小7、A【解析】本题可以利用锐
13、角三角函数的定义求解即可【详解】解:tanA=,AC=2BC,tanA=故选:A【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 8、B【解析】根据平方差公式计算即可得解【详解】,故选:B【点睛】本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.9、B【解析】可证明DFEBFA,根据相似三角形的面积之比等于相似比的平方即可得出答案【详解】四边形ABCD为平行四边形,DCAB,DFEBFA,DE:EC=3:1,DE:DC=3:4,DE:AB=3:4,SDFE:SBFA=9:1故选B10、A【解析】用-1加上1,求出比-1大1的是多少即可【详解】-1
14、+1=1,比-1大1的是1故选:A【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题分析:设点C的坐标为(x,y),则B(2,y)D(x,2),设BD的函数解析式为y=mx,则y=2m,x=,k=xy=(2m)()=1考点:求反比例函数解析式12、2.541【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】2540000的小数点向左移动6位得到2.54,所以,2540000用科学记数法可表示为:2.541,故答案为2.541
15、【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值13、【解析】A点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可.【详解】解:直角三角形斜边长度为,则A点到-1的距离等于,则A点所表示的数为:1+【点睛】本题考查了利用勾股定理求解数轴上点所表示的数.14、2【解析】连接AD交EF与点M,连结AM,由线段垂直平分线的性质可知AMMB,则BM+DMAM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为ABC底边上的高线,依据三
16、角形的面积为12可求得AD的长【详解】解:连接AD交EF与点M,连结AMABC是等腰三角形,点D是BC边的中点,ADBC,SABCBCAD4AD12,解得AD1,EF是线段AB的垂直平分线,AMBMBM+MDMD+AM当点M位于点M处时,MB+MD有最小值,最小值1BDM的周长的最小值为DB+AD2+12【点睛】本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.15、【解析】先将1化为根号的形式,根据被开方数越大值越大即可求解【详解】解: , ,故答案为【点睛】本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,
17、要把另一个也化为二次根式的形式,根据被开方数的大小进行比较16、62【解析】根据折叠的性质得出2=ABD,利用平角的定义解答即可【详解】解:如图所示:由折叠可得:2=ABD,DBC=56,2+ABD+56=180,解得:2=62,AE/BC,1=2=62,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出2=ABD是关键三、解答题(共8题,共72分)17、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由已知条件易得EAG=FCG,AG=GC结合AGE=FGC可得EAGFCG,从而可得EAGFCG,由此可得EG=FG,同理可得MG=NG,由此即可得
18、到四边形ENFM是平行四边形;(2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,AGE=CGN可得EAGNCG,则BAC=ACB ,AE=CN,从而可得AB=CB,由此可得BE=BN.详解:(1)四边形ABCD为平行四四边形边形,AB/CD. EAG=FCG. 点G为对角线AC的中点,AG=GC. AGE=FGC,EAGFCG. EG=FG. 同理MG=NG.四边形ENFM为平行四边形. (2)四边形ENFM为矩形,EF=MN,且EG=,GN=,EG=NG,又AG=CG,AGE=CGN,EAGNCG,BAC=ACB ,AE=CN,AB=BC,AB-AE=CB-CN,BE=BN
19、.点睛:本题是一道考查平行四边形的判定和性质及矩形性质的题目,熟练掌握相关图形的性质和判定是顺利解题的关键.18、(1);(2)(2)见解析;DMDN,理由见解析;数量关系:【解析】(1)先利用等腰三角形的性质和三角形内角和得到B=C=90,然后利用互余可得到EDB=;(2)如图,利用EDF=1802画图;先利用等腰三角形的性质得到DA平分BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到EDF=1802,所以MDE=NDF,然后证明MDENDF得到DM=DN;先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到B
20、E=BDsin,从而有BM+CN=BCsin【详解】(1)AB=AC,B=C(180A)=90DEAB,DEB=90,EDB=90B=90(90)=故答案为:;(2)如图:DM=DN理由如下:AB=AC,BD=DC,DA平分BACDEAB于点E,DFAC于点F,DE=DF,MED=NFD=90A=2,EDF=1802MDN=1802,MDE=NDF在MDE和NDF中,MDENDF,DM=DN;数量关系:BM+CN=BCsin证明思路为:先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,所以BM+CN=BE+EM+CFFN=2BE,接着在RtBDE可得BE=BDsin,从而有BM+
21、CN=BCsin【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质19、 ()发射台与雷达站之间的距离约为;()这枚火箭从到的平均速度大约是.【解析】()在RtACD中,根据锐角三角函数的定义,利用ADC的余弦值解直角三角形即可;()在RtBCD和RtACD中,利用BDC的正切值求出BC的长,利用ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.【详解】()在中,0.74,.答:发射台与雷达站之间的距离约为.()在中,.在中,.答:这枚火箭从到的平均速度大约是.【点睛】本题考查解直角三角形的应
22、用,熟练掌握锐角三角函数的定义是解题关键.20、(1)25, 90;(2)见解析;(3)该市 “活动时间不少于5天”的大约有1【解析】试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90;(2)“活动时间为6天” 的人数,如图所示:(3)“活动时间不少于5天”的学生人数占75%,2000075%=1该市“活动时间不少于5天”的大约有1人考点:统计的应用点评:统计的应用初中数学的重点,
23、在中考中极为常见,一般难度不大.21、(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.【解析】(1)根据平行得出DAMNCM,根据ASA推出AMDCMN,得出ADCN,推出四边形ADCN是平行四边形即可;(2)根据AMD2MCD,AMDMCDMDC求出MCDMDC,推出MDMC,求出MDMNMAMC,推出ACDN,根据矩形的判定得出即可【详解】证明:(1)CNAB,DAMNCM,在AMD和CMN中,DAMNCMMAMCDMANMC,AMDCMN(ASA),ADCN,又ADCN,四边形ADCN是平行四边形,CDAN;(2)解:四边形ADCN是矩形,理由如下:AMD2MCD,AMDMCD
24、MDC,MCDMDC,MDMC,由(1)知四边形ADCN是平行四边形,MDMNMAMC,ACDN,四边形ADCN是矩形【点睛】本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中22、解:(1)CD与O相切理由如下:AC为DAB的平分线,DAC=BACOA=OC,OAC=OCA,DAC=OCAOCADADCD,OCCDOC是O的半径,CD与O相切(2)如图,连接EB,由AB为直径,得到AEB=90,EBCD,F为EB的中点OF为ABE的中位线OF=AE=,即CF=DE=在RtOBF中,根据勾股定理得:EF=FB
25、=DC=E是的中点,=,AE=ECS弓形AE=S弓形ECS阴影=SDEC=【解析】(1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD垂直于CD,得到OC垂直于CD,即可得证(2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可考点:角平分线定义,等腰三角形的性质,平行的判定和性质,切线的判定,圆周角定理,三角形中位线定理,勾股定理,扇形面积的计算,转换
26、思想的应用23、(1)证明见解析;(1)证明见解析;(3)1.【解析】(1)连接OB、OC、OD,根据圆心角与圆周角的性质得BOD=1BAD,COD=1CAD,又AD平分BAC,得BOD=COD,再根据圆周角相等所对的弧相等得出结论.(1)过点O作OMAD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;(3)延长EO交AB于点H,连接CG,连接OA,BC为O直径,则G=CFE=FEG=90,四边形CFEG是矩形,得EG=CF,又AD平分BAC,再根据邻补角与余角的性质可得BAF=ABE,ACF=CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据
27、“角角边”证明出HBOABC,根据相似三角形的性质得出对应边成比例,进而得出结论.【详解】(1)如图1,连接OB、OC、OD,BAD和BOD是所对的圆周角和圆心角,CAD和COD是所对的圆周角和圆心角,BOD=1BAD,COD=1CAD,AD平分BAC,BAD=CAD,BOD=COD,=;(1)如图1,过点O作OMAD于点M,OMA=90,AM=DM,BEAD于点E,CFAD于点F,CFM=90,MEB=90,OMA=MEB,CFM=OMA,OMBE,OMCF,BEOMCF,OB=OC,=1,FM=EM,AMFM=DMEM,DE=AF;(3)延长EO交AB于点H,连接CG,连接OABC为O直径
28、,BAC=90,G=90,G=CFE=FEG=90,四边形CFEG是矩形,EG=CF,AD平分BAC,BAF=CAF=90=45,ABE=180BAFAEB=45,ACF=180CAFAFC=45,BAF=ABE,ACF=CAF,AE=BE,AF=CF,在RtACF中,AFC=90,sinCAF=,即sin45=,CF=1=,EG=,EF=1EG=1,AE=3,在RtAEB中,AEB=90,AB=6,AE=BE,OA=OB,EH垂直平分AB,BH=EH=3,OHB=BAC,ABC=ABCHBOABC,OH=1,OE=EHOH=31=1【点睛】本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.24、内错角相等,两直线平行【解析】根据内错角相等,两直线平行即可判断【详解】EPA=CAP,ml(内错角相等,两直线平行)故答案为:内错角相等,两直线平行【点睛】本题考查了作图复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型