《2022-2023学年海南东坡校中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年海南东坡校中考数学全真模拟试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1已知m,n,则代数式的值为 ()A3B3C5D92的相反数是()AB-CD3如图,二次函数y=ax2+bx+c(a0)的图象的顶点在第一象限,且过点(0,1)和(1,0)下列结论:ab0,b24a,0a+b+c2,0b1,当x1时,y0,其中正确结论的个数是A5个B4个C3个D2个4某运动会颁奖台如图所示,它的主视图是( )ABCD5关于x的方程=无解,则k的值为()A0或B1C2D36图1图4是四个基本作图的痕迹,关于四条弧、有四种说法:弧是以O为圆心,任意长为半径所画的弧;弧是以P为圆心,任意长为半径所画的弧;弧是以A为圆心,任意长为半径所
3、画的弧;弧是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A4B3C2D17将20011999变形正确的是()A200021B20002+1C20002+22000+1D2000222000+18的倒数的绝对值是()ABCD9如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么AOB的度数是()A90B60C45D3010下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角D等腰三角形两底角相等二、填空题(本大题共6个小题,每小题3分,共18分)11一个扇形的面
4、积是cm,半径是3cm,则此扇形的弧长是_12将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_13如图,在扇形OAB中,O=60,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,OB上,则图中阴影部分的面积为_14若一元二次方程有两个不相等的实数根,则k的取值范围是 15如图,A、B是反比例函数y(k0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若SAOC1则k_16如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_三
5、、解答题(共8题,共72分)17(8分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,(1)如图,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;(2)如图,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG2DM时,求边AG的长;(3)如图,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG4DM时,直接写出边AG的长18(8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在
6、1665岁之间的居民,进行了400个电话抽样调查并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是 岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出3140岁年龄段的满意人数,并补全图1注:某年龄段的满意率=该年龄段满意人数该年龄段被抽查人数100%19(8分)如图,AB是O的直径, O过BC的中点D,DEAC求证: BDACED20(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B
7、,C,D四个等级请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率21(8分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE若DE:AC=3:5,求的值22(10分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型(1)甲投放了一袋垃圾,恰
8、好是餐厨垃圾的概率是 ;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率23(12分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 APAD 求证:PDAB如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E,当的值是多少时,PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQBC已知 AD1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F,连接
9、 CF,G 为 CF 的中点,M、N 分别为线段 QF 和 CD 上的动点,且始终保持 QMCN,MN 与 DF 相交于点 H,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由24某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两
10、门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由已知可得:,=.【详解】由已知可得:,原式=故选:B【点睛】考核知识点:二次根式运算.配方是关键.2、C【解析】根据只有符号不同的两个数互为相反数进行解答即可.【详解】与只有符号不同,所以的相反数是,故选C【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.3、B【解析】解:二次函数y=ax3+bx+c(a3)过点(3,3)和(3,3),c=3,ab+c=3抛物线的对称轴在y轴右侧,,x3a与b异号ab3,正确抛物线与x轴有两个不同的交点,b3
11、4ac3c=3,b34a3,即b34a正确抛物线开口向下,a3ab3,b3ab+c=3,c=3,a=b3b33,即b33b3,正确ab+c=3,a+c=ba+b+c=3b3b3,c=3,a3,a+b+c=a+b+3a+3+3=a+33+3=33a+b+c3,正确抛物线y=ax3+bx+c与x轴的一个交点为(3,3),设另一个交点为(x3,3),则x33,由图可知,当3xx3时,y3;当xx3时,y3当x3时,y3的结论错误综上所述,正确的结论有故选B4、C【解析】从正面看到的图形如图所示:,故选C5、A【解析】方程两边同乘2x(x+3),得x+3=2kx,(2k-1)x=3,方程无解,当整式方
12、程无解时,2k-1=0,k=,当分式方程无解时,x=0时,k无解,x=-3时,k=0,k=0或时,方程无解,故选A.6、C【解析】根据基本作图的方法即可得到结论【详解】解:(1)弧是以O为圆心,任意长为半径所画的弧,正确;(2)弧是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧是以A为圆心,大于AB的长为半径所画的弧,错误;(4)弧是以P为圆心,任意长为半径所画的弧,正确故选C【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法7、A【解析】原式变形后,利用平方差公式计算即可得出答案【详解】解:原式=(2000+1)(2000-1)=20002-1,故选A【点睛】
13、此题考查了平方差公式,熟练掌握平方差公式是解本题的关键8、D【解析】直接利用倒数的定义结合绝对值的性质分析得出答案【详解】解:的倒数为,则的绝对值是:.故答案选:D.【点睛】本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.9、B【解析】首先连接AB,由题意易证得AOB是等边三角形,根据等边三角形的性质,可求得AOB的度数【详解】连接AB,根据题意得:OB=OA=AB,AOB是等边三角形,AOB=60.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.10、D【解析】解:A、如果a+b=0,那么a=b=0,或
14、a=b,错误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据扇形面积公式求解即可【详解】根据扇形面积公式.可得:,故答案:.【点睛】本题主要考查了扇形的面积和弧长之间的关系, 利用扇形弧长和半径代入公式即可求解, 正确理解公式是解题的关键. 注意在求扇形面积时, 要根据条件选择扇形面积公式.12、y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函
15、数是y=2x+4-3=2x+1;故答案为y=2x+1点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键13、88 【解析】连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可【详解】连接EF、OC交于点H,则OH=2,FH=OHtan30=2,菱形FOEC的面积=44=8,扇形OAB的面积=8,则阴影部分的面积为88,故答案为88【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键14、:k1【解析】一元二次方程
16、有两个不相等的实数根,=44k0,解得:k1,则k的取值范围是:k1故答案为k115、2【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E则ADBE,AD=2BE=,B、E分别是AC、DC的中点ADCBEC,BE:AD=1:2,EC:CD=1:2,EC=DE=a,OC=3a,又A(a, ),B(2a, ),SAOC=ADCO=3a =1,解得:k=216、1【解析】先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明ABEBCF(SAS),可得AGB=90,利用勾股定理可得OD的长,从而得DG的最小值【详解】在正方形ABCD中,AB=BC,ABC=BCD,在ABE和BCF中,
17、ABEBCF(SAS),BAE=CBF,CBF+ABF=90BAE+ABF=90AGB=90点G在以AB为直径的圆上,由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:正方形ABCD,BC=2,AO=1=OGOD=,DG=1,故答案为1.【点睛】本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.三、解答题(共8题,共72分)17、(1)结论:BEDG,BEDG理由见解析;(1)AG1;(3)满足条件的AG的长为1或1【解析】(1)结论:BEDG,BEDG只要证明BAEDAG(SAS),即可解决问题;(1)如图中,连接EG,
18、作GHAD交DA的延长线于H由A,D,E,G四点共圆,推出ADOAEG45,解直角三角形即可解决问题;(3)分两种情形分别画出图形即可解决问题;【详解】(1)结论:BE=DG,BEDG理由:如图中,设BE交DG于点K,AE交DG于点O四边形ABCD,四边形AEFG都是正方形,AB=AD,AE=AG,BAD=EAG=90,BAE=DAG,BAEDAG(SAS),BE=DG,AEB=AGD,AOG=EOK,OAG=OKE=90,BEDG(1)如图中,连接EG,作GHAD交DA的延长线于HOAGODE90,A,D,E,G四点共圆,ADOAEG45,DAM90,ADMAMD45, DG=1DM, H9
19、0,HDGHGD45,GHDH4,AH1,在RtAHG中, (3)如图中,当点E在CD的延长线上时作GHDA交DA的延长线于H易证AHGEDA,可得GHAB1,DG4DMAMGH, DH8,AHDHAD6,在RtAHG中, 如图31中,当点E在DC的延长线上时,易证:AKEGHA,可得AHEKBC1ADGH, AD1,HG10,在RtAGH中, 综上所述,满足条件的AG的长为或【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题18、(
20、1)1130;(1)3140岁年龄段的满意人数为66人,图见解析;【解析】(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【详解】(1)由扇形统计图可得1130岁的人数所占百分比最大为39%,所以,人数最多的年龄段是1130岁;(1)根据题意,被调查的人中,总体印象感到满意的有:40083%=331人,3140岁年龄段的满意人数为:3315411653149=331116=66人,补全统计图如图【点睛】本题考点:条形统计图与扇形统计图.19、证明见解析.【解析】不难看出BDA和CED都是直角三角形,证明BDACED,
21、只需要另外找一对角相等即可,由于AD是ABC的中线,又可证ADBC,即AD为BC边的中垂线,从而得到B=C,即可证相似【详解】AB是O直径,ADBC,又BD=CD,AB=AC,B=C,又ADB=DEC=90,BDACED.【点睛】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用20、(1)50;(2)16;(3)56(4)见解析【解析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状
22、图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解【详解】(1)1020%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式
23、计算事件A或事件B的概率也考查了统计图21、【解析】根据翻折的性质可得BAC=EAC,再根据矩形的对边平行可得ABCD,根据两直线平行,内错角相等可得DCA=BAC,从而得到EAC=DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到ACF和EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在RtADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解【详解】解:矩形沿直线AC折叠,点B落在点E处,CEBC,BACCAE,矩形对边ADBC,ADCE,设AE、CD相交于点F,在ADF和CEF中,ADFCE
24、F(AAS),EFDF,ABCD,BACACF,又BACCAE,ACFCAE,AFCF,ACDE,ACFDEF,设EF3k,CF5k,由勾股定理得CE,ADBCCE4k,又CDDFCF3k5k8k,ABCD8k,AD:AB(4k):(8k)【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出ACF和DEF相似是解题的关键,也是本题的难点22、(1);(2)【解析】(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案【详解】解:(1)垃圾要按餐厨垃圾、有害垃圾、可
25、回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,甲投放了一袋是餐厨垃圾的概率是,故答案为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为=【点睛】本题考查了用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比23、(1)证明见解析(2) (3) 【解析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于B
26、C的对称点P,连接DP交BC于点E,此时PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP,由平行得比例,求出所求比值即可;(3)GH=,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到MFHNDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可【详解】(1)在图1中,设AD=BC=a,则有AB=CD=a,四边形ABCD是矩形,A=90,PA=AD=BC=a,PD=a,AB=a,PD=AB;(2)如图,作点P关于BC的对称点P,连接DP交
27、BC于点E,此时PDE的周长最小,设AD=PA=BC=a,则有AB=CD=a,BP=AB-PA,BP=BP=a-a,BPCD, ;(3)GH=,理由为:由(2)可知BF=BP=AB-AP,AP=AD,BF=AB-AD,BQ=BC,AQ=AB-BQ=AB-BC,BC=AD,AQ=AB-AD,BF=AQ,QF=BQ+BF=BQ+AQ=AB,AB=CD,QF=CD,QM=CN,QF-QM=CD-CN,即MF=DN,MFDN,NFH=NDH,在MFH和NDH中, ,MFHNDH(AAS),FH=DH,G为CF的中点,GH是CFD的中位线,GH=CD=2=【点睛】此题属于相似综合题,涉及的知识有:相似三
28、角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键24、(1)50人;(2)补图见解析;(3). 【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得详解:(1)该班学生总数为1020%=50人;(2)历史学科的人数为50(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率