《2022-2023学年甘肃省白银市平川区重点名校中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年甘肃省白银市平川区重点名校中考三模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示,在ABC中,C=90,AC=4,BC=3,将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )A2BCD2如
2、图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )ABCD3下列运算正确的是 ( )A2+a=3B =CD=4据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有190家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为A元B元C元D元5如图,实数3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A点MB点NC点PD点Q6已知关于x的不等式组12x+
3、b1的解满足0x2,则b满足的条件是()A0b2B3b1C3b1Db=1或37如图,在矩形 ABCD 中,AB=2a,AD=a,矩形边上一动点 P 沿 ABCD 的路径移动设点 P 经过的路径长为 x,PD2=y,则下列能大致反映 y 与 x 的函数关系的图象是( )ABCD8如图,O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )ADAC=DBC=30BOABC,OBACCAB与OC互相垂直DAB与OC互相平分9如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是ABCD10计算(2)23的值是( )A、1 B、2 C、
4、1 D、2二、填空题(共7小题,每小题3分,满分21分)11如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是_12点A(a,3)与点B(4,b)关于原点对称,则a+b()A1B4C4D113将两张三角形纸片如图摆放,量得1+2+3+4=220,则5=_14方程的解是 15计算:21+=_16如图,AC是正五边形ABCDE的一条对角线,则ACB_17某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 _元。三、解答题(共7小题,满分69分)18(10分)如图,在大楼AB正前方有一斜坡CD
5、,坡角DCE=30,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60,在斜坡上的D处测得楼顶B的仰角为45,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.19(5分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45的方向求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号)20(8分)如图,在航线l的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60方向且与A相距10km现有一艘轮船从位于点B南
6、偏西76方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处(1)求观测点B到航线的距离;(2)求该轮船航行的速度(结果精确到0.1km/h)(参考数据: 1.73,sin760.97,cos760.24,tan764.01)21(10分)为了了解某校学生对以下四个电视节目:A最强大脑,B中国诗词大会,C朗读者,D出彩中国人的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为_;在扇形统计图中,A部分所占圆心角的度数为_;请将条形统
7、计图补充完整:若该校共有3000名学生,估计该校最喜爱中国诗词大会的学生有多少名?22(10分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC直线l,BCE=71,CE=54cm(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E,求EE的长(结果精确到0.1cm)(参考数据:sin710.95,cos710.33,tan712.90)23(12分)如图
8、,已知二次函数的图象经过,两点求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,求的面积24(14分)解方程:1参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:连接BD在ABC中,C=90,AC=4,BC=3,AB=2将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=4,DE=3,BE=2在RtBED中,BD=故选C点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系题目整体较为简单,适合随堂训练2、C【解析】列表得,120-11(1,1)(1,2)(1,0)(1,-
9、1)2(2,1)(2,2)(2,0)(2,-1)0(0,1)(0,2)(0,0)(0,-1)-1(-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.考点:用列表法(或树形图法)求概率.3、D【解析】根据整式的混合运算计算得到结果,即可作出判断【详解】A、2与a 不是同类项,不能合并,不符合题意;B、 =,不符合题意;C、原式=,不符合题意;D、=,符合题意,故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键4、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数
10、;当原数的绝对值1时,n是负数【详解】亿=115956000000,所以亿用科学记数法表示为1.159561011,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、D【解析】实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,原点在点M与N之间,这四个数中绝对值最大的数对应的点是点Q故选D6、C【解析】根据不等式的性质得出x的解集,进而解答即可【详解】-12x+b1,关于x的不等式组-12x+b1的解满足0x2,解得:-3b-1,故选C【点睛】此题考查解一元一次不等式组,关键是根据不等式的
11、性质得出x的解集7、D【解析】解:(1)当0t2a时,AP=x,;(2)当2at3a时,CP=2a+ax=3ax,=;(3)当3at5a时,PD=2a+a+2ax=5ax,=y,=;综上,可得,能大致反映y与x的函数关系的图象是选项D中的图象故选D8、C【解析】(1)DAC=DBC=30,AOC=BOC=60,又OA=OC=OB,AOC和OBC都是等边三角形,OA=AC=OC=BC=OB,四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)OABC,OBAC,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3
12、)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)AB与OC互相平分,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.9、D【解析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.10、A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加
13、法,即得结果。解答本题的关键是掌握好有理数的加法、乘方法则。二、填空题(共7小题,每小题3分,满分21分)11、【解析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论【详解】解:由图可知,黑色方砖4块,共有16块方砖,黑色方砖在整个区域中所占的比值它停在黑色区域的概率是;故答案为【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=12、1【解析】据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可【详解】点A(a,3)与点B(4,b)关于原点对称,a=4,b=3,a+b=1,
14、故选D【点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.13、40【解析】直接利用三角形内角和定理得出6+7的度数,进而得出答案【详解】如图所示:1+2+6=180,3+4+7=180,1+2+3+4=220,1+2+6+3+4+7=360,6+7=140,5=180-(6+7)=40故答案为40【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键14、x=1【解析】根据解分式方程的步骤解答即可.【详解】去分母得:2x=3x1,解得:x=1,经检验x=1是分式方程的解,故答案为x=1【点睛】本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键1
15、5、【解析】根据负整指数幂的性质和二次根式的性质,可知=.故答案为.16、36【解析】由正五边形的性质得出B=108,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果【详解】五边形ABCDE是正五边形,B=108,AB=CB,ACB=(180108)2=36;故答案为3617、500【解析】设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.【详解】解:设该品牌时装的进价为x元,根据题意得:100090%-x=80%x,解得:x=500,则该品牌时装的进价为500元.故答案为:500.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关
16、键.三、解答题(共7小题,满分69分)18、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DFAB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角ABC中,BAC=90,BCA=60,AB=60米,则AC=(米)答:坡底C点到大楼距离AC的值是20米(2)过点D作DFAB于点F,则四边形AEDF为矩形,AF=DE,DF=AE.设CD=x米,在RtCDE中,DE=x米,CE=x米在RtBDF中,BDF=45
17、,BF=DF=AB-AF=60-x(米)DF=AE=AC+CE,20+x=60-x解得:x=80-120(米)故斜坡CD的长度为(80-120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键19、小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里【解析】试题分析:过P作PMAB于M,求出PBM=45,PAM=30,求出PM,即可求出BM、AM、BP试题解析:如图:过P作PMAB于M,则PMB=PMA=90,PBM=9045=45,PAM=9060=30,AP=20,PM=AP=10,AM=PM=,BPM=PBM=45,PM=B
18、M=10,AB=AM+MB=,BP=,即小船到B码头的距离是海里,A、B两个码头间的距离是()海里考点:解直角三角形的应用-方向角问题20、(1)观测点到航线的距离为3km(2)该轮船航行的速度约为40.6km/h【解析】试题分析:(1)设AB与l交于点O,利用DAO=60,利用DAO的余弦求出OA长,从而求得OB长,继而求得BE长即可;(2)先计算出DE=EF+DF=求出DE=5,再由进而由tanCBE=求出EC,即可求出CD的长,进而求出航行速度试题解析:(1)设AB与l交于点O,在RtAOD中,OAD=60,AD=2(km),OA=4(km),AB=10(km),OB=ABOA=6(km
19、),在RtBOE中,OBE=OAD=60,BE=OBcos60=3(km),答:观测点B到航线l的距离为3km; (2)OAD=60,AD=2(km),OD=ADtan60=2 ,BEO=90,BO=6,BE=3,OE=3,DE=OD+OE=5(km); CE=BEtanCBE=3tan76,CD=CEDE=3tan7653.38(km),5(min)= (h),v=12CD=123.3840.6(km/h),答:该轮船航行的速度约为40.6km/h【点睛】本题主要考查了方向角问题以及利用锐角三角函数关系得出EC,DE,DO的长是解题关键21、(1)120;(2) ;(3)答案见解析;(4)1
20、650.【解析】(1)依据节目B的数据,即可得到调查的学生人数;(2)依据A部分的百分比,即可得到A部分所占圆心角的度数;(3)求得C部分的人数,即可将条形统计图补充完整;(4)依据喜爱中国诗词大会的学生所占的百分比,即可得到该校最喜爱中国诗词大会的学生数量【详解】,故答案为120;,故答案为;:,如图所示:,答:该校最喜爱中国诗词大会的学生有1650名【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答22、(1)81cm;(2)8.6cm;【解析】(1)作EMBC于点M,由EM=ECsinBCE可得答案;(2)作E
21、HBC于点H,先根据EC=求得EC的长度,再根据EE=CECE可得答案【详解】(1)如图1,过点E作EMBC于点M由题意知BCE=71、EC=54,EM=ECsinBCE=54sin7151.3,则单车车座E到地面的高度为51.3+3081cm;(2)如图2所示,过点E作EHBC于点H由题意知EH=700.85=59.5,则EC=62.6,EE=CECE=62.654=8.6(cm)【点睛】本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答23、见解析【解析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值【详解】(1)把,代入得,解得.这个二次函数解析式为.(2)抛物线对称轴为直线,的坐标为,.【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式24、【解析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【详解】原方程变形为,方程两边同乘以(2x1),得2x51(2x1),解得 检验:把代入(2x1),(2x1)0,是原方程的解,原方程的【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.