《2022-2023学年湖北省武汉市武昌区中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省武汉市武昌区中考数学仿真试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A千里江山图B京津冀协同发展C内蒙古自治区成立七十周年D河北雄安新区建立纪念2关于x的一元二次方程x22x+k+20有实数根,则k的取值范围在数轴上表示正确的是( )ABCD3根据如图所示的程序计算函
2、数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A9B7C9D74如图是二次函数图象的一部分,其对称轴为x=1,且过点(3,0)下列说法:abc0;1ab=0;4a+1b+c0;若(5,y1),(,y1)是抛物线上两点,则y1y1其中说法正确的是( )A B C D5如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解,则t的取值范围是( ) A-5t4B3t4C-5t-56如图,已知AC是O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交O于点E,若AOB=3ADB,则()ADE=
3、EBBDE=EBCDE=DODDE=OB7如图,在矩形ABCD中AB,BC1,将矩形ABCD绕顶点B旋转得到矩形ABCD,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为()ABCD8若正比例函数ymx(m是常数,m0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A2B2C4D49已知圆心在原点O,半径为5的O,则点P(-3,4)与O的位置关系是( )A在O内 B在O上C在O外 D不能确定10一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函
4、数关系下列叙述错误的是()AAB两地相距1000千米B两车出发后3小时相遇C动车的速度为D普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地二、填空题(共7小题,每小题3分,满分21分)11分解因式:xy22xy+x_12在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_13如图,在平面直角坐标系中,已知点A(4,0)、B(0,3),对AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、,则第(5)个三角形的直角顶点的坐标是_,第(2018)个三角形的直
5、角顶点的坐标是_14如图,在O中,直径AB弦CD,A=28,则D=_15若m22m1=0,则代数式2m24m+3的值为 16关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_17如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则AED的周长为_cm.三、解答题(共7小题,满分69分)18(10分)阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小操作步骤作法由操作
6、步骤推断(仅选取部分结论)第一步在第一个正方形ABCD的对角线AC上截取AE=a1,再作EFAC于点E,EF与边BC交于点F,记CE=a2(i)EAFBAF(判定依据是);(ii)CEF是等腰直角三角形;(iii)用含a1的式子表示a2为:第二步以CE为边构造第二个正方形CEFG;第三步在第二个正方形的对角线CF上截取FH=a2,再作IHCF于点H,IH与边CE交于点I,记CH=a3:(iv)用只含a1的式子表示a3为:第四步以CH为边构造第三个正方形CHIJ这个过程可以不断进行下去若第n个正方形的边长为an,用只含a1的式子表示an为请解决以下问题:(1)完成表格中的填空: ; ; ; ;(
7、2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图)19(5分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元台,乙种品牌空调的售价为3500元台请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润20(8分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造如图,为体育馆改造的截面示意
8、图已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角ABC为45,原坡脚B与场馆中央的运动区边界的安全距离BD为5米如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角EFG为37若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由(参考数据:sin37,tan37)21(10分)如图,AB是O的直径,点C在AB的延长线上,AD平分CAE交O于点D,且AECD,垂足为点E(1)求证:直线CE是O
9、的切线(2)若BC3,CD3,求弦AD的长22(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”比赛项目为:A唐诗;B宋词;C论语;D三字经比赛形式分“单人组”和“双人组”小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明23(12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4)点A在DE上,以A
10、为顶点的抛物线过点C,且对称轴x1交x轴于点B连接EC,AC点P,Q为动点,设运动时间为t秒(1)求抛物线的解析式(2)在图中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动当t为何值时,PCQ为直角三角形?(3)在图中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PFAB,交AC于点F,过点F作FGAD于点G,交抛物线于点Q,连接AQ,CQ当t为何值时,ACQ的面积最大?最大值是多少?24(14分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转如果这
11、三种可能性大小相同,现有两辆汽车经过这个十字路口(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率(2)求至少有一辆汽车向左转的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据中心对称图形的概念求解【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误故选C【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合2、C【解析】由一元二次方程有实数
12、根可知0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围【详解】关于x的一元二次方程x22x+k+2=0有实数根,=(2)24(k+2)0,解得:k1,在数轴上表示为:故选C.【点睛】本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.3、C【解析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案【详解】当x=7时,y=6-7=-1,当x=4时,y=24+b=-1,解得:b=-9,故选C【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法4、C【解析】二次函数的图象的开口向上,a0。二次函数的图象y轴的交点在y轴的
13、负半轴上,c0。二次函数图象的对称轴是直线x=1,。b=1a0。abc0,因此说法正确。1ab=1a1a=0,因此说法正确。二次函数图象的一部分,其对称轴为x=1,且过点(3,0),图象与x轴的另一个交点的坐标是(1,0)。把x=1代入y=ax1+bx+c得:y=4a+1b+c0,因此说法错误。二次函数图象的对称轴为x=1,点(5,y1)关于对称轴的对称点的坐标是(3,y1),当x1时,y随x的增大而增大,而3y1y1,因此说法正确。综上所述,说法正确的是。故选C。5、B【解析】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x
14、=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1x3的范围内有公共点可确定t的范围【详解】 抛物线y=-x2+mx的对称轴为直线x=2, , 解之:m=4, y=-x2+4x, 当x=2时,y=-4+8=4, 顶点坐标为(2,4), 关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解, 当x=1时,y=-1+4=3, 当x=2时,y=-4+8=4, 3t4, 故选:B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质6、D【解析
15、】解:连接EO.B=OEB,OEB=D+DOE,AOB=3D,B+D=3D,D+DOE+D=3D,DOE=D,ED=EO=OB,故选D.7、A【解析】本题首先利用A点恰好落在边CD上,可以求出ACBC1,又因为AB可以得出ABC为等腰直角三角形,即可以得出ABA、DBD的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA和面积DAD【详解】先连接BD,首先求得正方形ABCD的面积为,由分析可以求出ABADBD45,即可以求得扇形ABA的面积为,扇形BDD的面积为,面积ADA面积ABCD面积ABC扇形面积ABA;面积DAD扇形面积BDD面积DBA面积BAD,阴影部分面积面积DAD+面积
16、ADA【点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.8、B【解析】利用待定系数法求出m,再结合函数的性质即可解决问题【详解】解:ymx(m是常数,m0)的图象经过点A(m,4),m24,m2,y的值随x值的增大而减小,m0,m2,故选:B【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型9、B.【解析】试题解析:OP=5,根据点到圆心的距离等于半径,则知点在圆上故选B考点:1.点与圆的位置关系;2.坐标与图形性质10、C【解析】可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距100
17、0千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.【点睛】理解转折点的含义是解决这一类题的关键.二、填空题(共7小题,每小题3分,满分21分)11、x(y-1)2【解析】分析:先提公因式x,再用完全平方公式把继续分解.详解:=x()=x()2.故答案为x()2.点睛:本题考查了因式分解,有公因式先提公因式,然后再用公式法继续分解,因式分解必须分解到每个因式都不能再分解为止.12、(-1, -6)【解析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案【详解】点A的坐
18、标是(-1,2),作点A关于x轴的对称点,得到点A1,A1(-1,-2),将点A1向下平移4个单位,得到点A2,点A2的坐标是:(-1,-6)故答案为:(-1, -6)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数13、(16,) (8068,) 【解析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(20
19、18)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解】点A(4,0),B(0,3),OA=4,OB=3,AB=5,第(2)个三角形的直角顶点的坐标是(4,);53=1余2,第(5)个三角形的直角顶点的坐标是(16,),20183=672余2,第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,第(2018)个三角形的直角顶点的坐标是(8068,)故答案为:(16,);(8068,)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.14、34【解析】分析:首先根据垂径定理得出BOD的度数
20、,然后根据三角形内角和定理得出D的度数详解:直径AB弦CD, BOD=2A=56, D=9056=34点睛:本题主要考查的是圆的垂径定理,属于基础题型求出BOD的度数是解题的关键15、1【解析】试题分析:先求出m22m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解解:由m22m1=0得m22m=1,所以,2m24m+3=2(m22m)+3=21+3=1故答案为1考点:代数式求值16、k【解析】由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围【详解】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,0,即(2k+1)2-4(k2+
21、1)0,解得k,故答案为k【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键17、7【解析】根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出ADE的周长=AC+AE【详解】折叠这个三角形点C落在AB边上的点E处,折痕为BD,BE=BC,DE=CD,AE=AB-BE=AB-BC=8-6=2cm,ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm故答案为:7.【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等三、解答题(共7小题,满分69分)18、(1)斜边和一条直角边分别相等的两个直角三角形
22、全等(1)a1;(1)2a1;(1)n1a1;(2)见解析.【解析】(1)由题意可知在RtEAF和RtBAF中,AE=AB,AF=AF,所以RtEAFRtBAF;由题意得AB=AE=a1,AC=a1,则CE=a2=a1a1=(1)a1;同上可知CF=CE=(1)a1,FH=EF=a2,则CH=a3=CFFH=(1)2a1;同理可得an=(1)n1a1;(2)根据题意画图即可.【详解】解:(1)斜边和一条直角边分别相等的两个直角三角形全等;理由是:如图1,在RtEAF和RtBAF中,RtEAFRtBAF(HL);四边形ABCD是正方形,AB=BC=a1,ABC=90,AC=a1,AE=AB=a1
23、,CE=a2=a1a1=(1)a1;四边形CEFG是正方形,CEF是等腰直角三角形,CF=CE=(1)a1,FH=EF=a2,CH=a3=CFFH=(1)a1(1)a1=(1)2a1;同理可得:an=(1)n1a1;故答案为斜边和一条直角边分别相等的两个直角三角形全等(1)a1;(1)2a1;(1)n1a1;(2)所画正方形CHIJ见右图.19、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解析】(1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价
24、单价可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,由题意,得 ,解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)1500=1800(元).答:甲种品牌的进价为1500元,乙种品牌空调的
25、进价为1800元;(2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,由题意,得1500a+1800(10-a)16000,解得 a,设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因为-7000,则w随a的增大而减少,当a=7时,w最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.【点睛】本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价单价列出关于x的分式方程;(2)根据总利润=单台利润购进数量找出y关于a的函数关
26、系式20、不满足安全要求,理由见解析【解析】在RtABC中,由ACB=90,AC=15m,ABC=45可求得BC=15m;在RtEGD中,由EGD=90,EG=15m,EFG=37,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=22.5,由此可知:“设计方案不满足安全要求”.【详解】解:施工方提供的设计方案不满足安全要求,理由如下:在RtABC中,AC=15m,ABC=45,BC=15m在RtEFG中,EG=15m,EFG=37,GF=20mEG=AC=15m,ACBC,EGBC,EGAC,四
27、边形EGCA是矩形,GC=EA=2m,DF=GC+BC+BD-GF=2+15+5-20=22.5.施工方提供的设计方案不满足安全要求21、(1)证明见解析(2) 【解析】(1)连结OC,如图,由AD平分EAC得到1=3,加上1=2,则3=2,于是可判断ODAE,根据平行线的性质得ODCE,然后根据切线的判定定理得到结论;(2)由CDBCAD,可得,推出CD2=CBCA,可得(3)2=3CA,推出CA=6,推出AB=CABC=3,设BD=k,AD=2k,在RtADB中,可得2k2+4k2=5,求出k即可解决问题【详解】(1)证明:连结OC,如图,AD平分EAC,1=3,OA=OD,1=2,3=2
28、,ODAE,AEDC,ODCE,CE是O的切线;(2)CDO=ADB=90,2=CDB=1,C=C,CDBCAD,CD2=CBCA,(3)2=3CA,CA=6,AB=CABC=3,,设BD=k,AD=2k,在RtADB中,2k2+4k2=5,k=,AD=22、 (1) ;(2).【解析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数
29、为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=23、(1)yx2+2x+3;(2)当t或t时,PCQ为直角三角形;(3)当t2时,ACQ的面积最大,最大值是1【解析】(1)根据抛物线的对称轴与矩形的性质可得点A的坐标,根据待定系数法可得抛物线的解析式;(2)先根据勾股定理可得CE,再分两种情况:当QPC90时;当PQC90时;讨论可得PCQ为直角三角形时t的值;(3)根据待定系数法可得直线AC的解析式,根据SACQSAFQ+SCPQ可得SACQ(t2)2+1,依此即可求解【详解】解:(1)抛物线的对称轴为x1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A
30、在DE上,点A坐标为(1,4),设抛物线的解析式为ya(x1)2+4,把C(3,0)代入抛物线的解析式,可得a(31)2+40,解得a1故抛物线的解析式为y(x1)2+4,即yx2+2x+3;(2)依题意有:OC3,OE4,CE5,当QPC90时,cosQPC,解得t;当PQC90时,cosQCP,解得t当t或 t时,PCQ为直角三角形;(3)A(1,4),C(3,0),设直线AC的解析式为ykx+b,则有:,解得故直线AC的解析式为y2x+2P(1,4t),将y4t代入y2x+2中,得x1+,Q点的横坐标为1+,将x1+ 代入y(x1)2+4 中,得y4Q点的纵坐标为4,QF(4)(4t)t
31、,SACQ SAFQ +SCFQFQAG+FQDG,FQ(AG+DG),FQAD,2(t),(t2)2+1,当t2时,ACQ的面积最大,最大值是1【点睛】考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用24、 (1);(2)【解析】(1)可以采用列表法或树状图求解可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等P(至少有一辆汽车向左转)=【点睛】此题考查了树状图法求概率解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解