2022-2023学年贵州省六盘水二十中学中考数学猜题卷含解析.doc

上传人:茅**** 文档编号:87069074 上传时间:2023-04-16 格式:DOC 页数:20 大小:998KB
返回 下载 相关 举报
2022-2023学年贵州省六盘水二十中学中考数学猜题卷含解析.doc_第1页
第1页 / 共20页
2022-2023学年贵州省六盘水二十中学中考数学猜题卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022-2023学年贵州省六盘水二十中学中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年贵州省六盘水二十中学中考数学猜题卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列说法错误的是( )A必然事件的概率为1B数据1、2、2、3的平均数是2C数据5、2、3、0的极差是8D如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖2下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中

2、心对称图形的是( )ABCD3若代数式,则M与N的大小关系是( )ABCD4下列安全标志图中,是中心对称图形的是( )ABCD5下列4个数:,()0,其中无理数是()ABCD()06关于2、6、1、10、6的这组数据,下列说法正确的是( )A这组数据的众数是6B这组数据的中位数是1C这组数据的平均数是6D这组数据的方差是107如图,在RtABC中,ACB=90,CDAB,垂足为D,AB=c,A=,则CD长为()Acsin2Bccos2CcsintanDcsincos8如图,将含60角的直角三角板ABC绕顶点A顺时针旋转45度后得到ABC,点B经过的路径为弧BB,若BAC=60,AC=1,则图中

3、阴影部分的面积是( )ABCD9如图,能判定EBAC的条件是( )AC=ABEBA=EBDCA=ABEDC=ABC10如图,抛物线y=ax2+bx+c(a0)过点(1,0)和点(0,2),且顶点在第三象限,设P=ab+c,则P的取值范围是( )A4P0B4P2C2P0D1P0二、填空题(共7小题,每小题3分,满分21分)11已知函数y=-1,给出一下结论:y的值随x的增大而减小此函数的图形与x轴的交点为(1,0)当x0时,y的值随x的增大而越来越接近-1当x时,y的取值范围是y1以上结论正确的是_(填序号)12关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值

4、范围是_13抛物线向右平移1个单位,再向下平移2个单位所得抛物线是_14如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是_cm.15如图,在矩形ABCD中,DEAC,垂足为E,且tanADE,AC5,则AB的长_16已知(x+y)225,(xy)29,则x2+y2_17不等式52x1的解集为_三、解答题(共7小题,满分69分)18(10分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C)他们各自在这三项活动中任选一个,每项活动被选中

5、的可能性相同(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率19(5分)如图,点C、E、B、F在同一直线上,ACDF,ACDF,BCEF,求证:AB=DE20(8分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形ABCD,点 C的对应点 C恰好落在CB的延长线上,边AB交边 CD于点E(1)求证:BCBC;(2)若 AB2,BC1,求AE的长21(10分)如图1,抛物线y=ax2+bx2与x轴交于点A(1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2)(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另

6、一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3)如图3,连结AC,将AOC绕点O逆时针方向旋转,记旋转中的三角形为AOC,在旋转过程中,直线OC与直线BE交于点Q,若BOQ为等腰三角形,请直接写出点Q的坐标22(10分)如图1,已知DAC=90,ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60得到线段CQ,连结QB并延长交直线AD于点E(1)如图1,猜想QEP= ;(2)如图2,3,若当DAC是锐角或钝角时,其它条件不变,猜想QEP的度数,选取一种情况加以证明;(3)如图

7、3,若DAC=135,ACP=15,且AC=4,求BQ的长23(12分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DEAB,摄像头EFDE于点E,AC=55米,CD=3米,EF=0.4米,CDE=162求MCD的度数;求摄像头下端点F到地面AB的距离(精确到百分位)24(14分)在ABC中,AB=BC=2,ABC=120,将ABC绕着点B顺时针旋转角a(0a90)得到A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有

8、怎样的数量关系?并证明你的结论(2)如图2,当a=30时,试判断四边形BC1DA的形状,并证明(3)在(2)的条件下,求线段DE的长度参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:A概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B数据1、2、2、3的平均数是=2,本项正确;C这些数据的极差为5(3)=8,故本项正确;D某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件2、B【解析】由中心对称图形的定义:“把一个图

9、形绕一个点旋转180后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.3、C【解析】,.故选C.4、B【解析】试题分析:A不是中心对称图形,故此选项不合题意;B是中心对称图形,故此选项符合题意;C不是中心对称图形,故此选项不符合题意;D不是中心对称图形,故此选项不合题意;故选B考点:中心对称图形5、C【解析】=3,是无限循环小数,是无限不循环小数,所以是无理数,故选C6、A【解析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10

10、)=5,数据的中位数为6,众数为6,数据的方差= (15)2+(25)2+(65)2+(65)2+(105)2=10.1故选A考点:方差;算术平均数;中位数;众数7、D【解析】根据锐角三角函数的定义可得结论.【详解】在RtABC中,ACB=90,AB=c,A=a,根据锐角三角函数的定义可得sin= ,BC=csin,A+B=90,DCB+B=90,DCB=A=在RtDCB中,CDB=90,cosDCB= ,CD=BCcos=csincos,故选D8、A【解析】试题解析:如图,在RtABC中,ACB=90,BAC=60,AC=1,BC=ACtan60=1=,AB=2SABC=ACBC=根据旋转的

11、性质知ABCABC,则SABC=SABC,AB=ABS阴影=S扇形ABB+SABC-SABC=故选A考点:1.扇形面积的计算;2.旋转的性质9、C【解析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线【详解】A、C=ABE不能判断出EBAC,故本选项错误; B、A=EBD不能判断出EBAC,故本选项错误;C、A=ABE,根据内错角相等,两直线平行,可以得出EBAC,故本选项正确; D、C=ABC只能判断出AB=AC,不能判断出EBAC,故本选项错误故选C【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错

12、角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行10、A【解析】解:二次函数的图象开口向上,a1对称轴在y轴的左边,1b1图象与y轴的交点坐标是(1,2),过(1,1)点,代入得:a+b2=1a=2b,b=2ay=ax2+(2a)x2把x=1代入得:y=a(2a)2=2a3,b1,b=2a1a2a1,1a212a332a31,即3P1故选A【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】(1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论错

13、误;(2)由解得:,的图象与x轴的交点为(1,0),故中结论正确;(3)由可知当x0时,y的值随x的增大而越来越接近-1,故中结论正确;(4)因为在中,当时,故中结论错误;综上所述,正确的结论是.故答案为:.12、k2且k1【解析】试题解析:关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,k-10且=(-2)2-4(k-1)0,解得:k2且k1考点:1.根的判别式;2.一元二次方程的定义13、(或)【解析】将抛物线化为顶点式,再按照“左加右减,上加下减”的规律平移即可【详解】解:化为顶点式得:,向右平移1个单位,再向下平移2个单位得:,化为一般式得:,故答案为:(或)【点

14、睛】此题不仅考查了对图象平移的理解,同时考查了学生将一般式转化顶点式的能力14、5【解析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解【详解】解:如图,设圆心为O,弦为AB,切点为C如图所示则AB=8cm,CD=2cm连接OC,交AB于D点连接OA尺的对边平行,光盘与外边缘相切,OCABAD=4cm设半径为Rcm,则R2=42+(R-2)2,解得R=5,该光盘的半径是5cm故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键15、3.【解析】先根据同角的余角相等证明ADEACD,在ADC根据锐角三角函数表示用含有k的代数

15、式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】四边形ABCD是矩形,ADC90,ABCD,DEAC,AED90,ADE+DAE90,DAE+ACD90,ADEACD,tanACDtanADE,设AD4k,CD3k,则AC5k,5k5,k1,CDAB3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.16、17【解析】先利用完全平方公式展开,然后再求和.【详解】根据(x+y)2=25,x2+y2+2xy=25;(xy)2

16、=9, x2+y2-2xy=9,所以x2+y2=17.【点睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等价变形:,.17、x1【解析】根据不等式的解法解答.【详解】解:, .故答案为【点睛】此题重点考查学生对不等式解的理解,掌握不等式的解法是解题的关键.三、解答题(共7小题,满分69分)18、(1);(2).【解析】(1)利用概率公式直接计算即可;(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案【详解】(1)小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,小明选择去郊

17、游的概率=;(2)列表得: ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,所以小明和小亮的选择结果相同的概率=【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比19、证明见解析【解析】证明:AC/DF 在和中 ABCDEF(SAS)20、(1)证明见解析;(2)AE=【解析】(1)连结 A

18、C、AC,根据矩形的性质得到ABC90,即 ABCC, 根据旋转的性质即可得到结论;(2)根据矩形的性质得到 ADBC,DABC90,根据旋转的性质得到 BCAD,ADAD,证得 BCAD,根据全等三角形的性质得到 BEDE,设 AEx,则 DE2x,根据勾股定理列方程即可得到结论【详解】解:(1)连结 AC、AC,四边形 ABCD为矩形,ABC90,即 ABCC,将矩形 ABCD 绕点A顺时针旋转,得到矩形 ABCD,ACAC,BCBC;(2)四边形 ABCD 为矩形,ADBC,DABC90,BCBC,BCAD,将矩形 ABCD 绕点 A 顺时针旋转,得到矩形 ABCD,ADAD,BCAD,

19、在ADE 与CBE中ADECBE,BEDE,设 AEx,则 DE2x,在 RtADE 中,D90, 由勾定理,得 x2(2x)21,解得 x,AE 【点睛】本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等, 熟练掌握性质定理是解题的关键21、(1)y=x2x2;(2)9;(3)Q坐标为()或(4)或(2,1)或(4+,)【解析】试题分析:把点代入抛物线,求出的值即可.先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,联立方程求出点的坐标, 最大值=,进而计算四边形EAPD面积的最大值;分两种情况进行讨论即可.试题解析:(1)在抛物线

20、上, 解得 抛物线的解析式为 (2)过点P作轴交AD于点G, 直线BE的解析式为 ADBE,设直线AD的解析式为 代入,可得 直线AD的解析式为 设则 则 当x=1时,PG的值最大,最大值为2,由 解得 或 最大值= ADBE, S四边形APDE最大=SADP最大+ (3)如图31中,当时,作于T 可得 如图32中,当时, 当时, 当时,Q3综上所述,满足条件点点Q坐标为或或或22、(1)QEP=60;(2)QEP=60,证明详见解析;(3)【解析】(1)如图1,先根据旋转的性质和等边三角形的性质得出PCA=QCB,进而可利用SAS证明CQBCPA,进而得CQB=CPA,再在PEM和CQM中利

21、用三角形的内角和定理即可求得QEP=QCP,从而完成猜想;(2)以DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明ACPBCQ,可得APC=Q,进一步即可证得结论;(3)仿(2)可证明ACPBCQ,于是AP=BQ,再求出AP的长即可,作CHAD于H,如图3,易证APC=30,ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.【详解】解:(1)QEP=60;证明:连接PQ,如图1,由题意得:PC=CQ,且PCQ=60,ABC是等边三角形,ACB=60,PCA=QCB,则在CPA和CQB中, ,CQBCPA(SAS),CQB=CPA,又因为PEM和CQM

22、中,EMP=CMQ,QEP=QCP=60.故答案为60; (2)QEP=60.以DAC是锐角为例.证明:如图2,ABC是等边三角形,AC=BC,ACB=60,线段CP绕点C顺时针旋转60得到线段CQ,CP=CQ,PCQ=60,ACB+BCP=BCP+PCQ,即ACP=BCQ,在ACP和BCQ中, ,ACPBCQ(SAS),APC=Q,1=2,QEP=PCQ=60; (3)连结CQ,作CHAD于H,如图3,与(2)一样可证明ACPBCQ,AP=BQ,DAC=135,ACP=15,APC=30,CAH=45,ACH为等腰直角三角形,AH=CH=AC=4=,在RtPHC中,PH=CH=,PA=PHA

23、H=,BQ=.【点睛】本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.23、(1) (2)6.03米【解析】分析:延长ED,AM交于点P,由CDE=162及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.详解:(1)如图,延长ED,AM交于点P,DEAB, , 即MPD=90 CDE=162 (2)如图,在RtPCD中, CD=3米,PC = 米 AC=5.5米, E

24、F=0.4米, 米 答:摄像头下端点F到地面AB的距离为6.03米. 点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的关系,找到已知和未知相关联的的直角三角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.24、(1)(2)四边形是菱形.(3)【解析】(1)根据等边对等角及旋转的特征可得即可证得结论;(2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;(3)过点E作于点G,解可得AE的长,结合菱形的性质即可求得结果【详解】(1)证明:(证法一)由旋转可知,又即(证法二)由旋转可知,而即(2)四边形是菱形.证明:同理四边形是平行四边形.又四边形是菱形(3)过点作于点,则在中,.由(2)知四边形是菱形,【点睛】解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 初中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁