2022-2023学年河南省新乡市延津县重点中学中考数学最后冲刺模拟试卷含解析.doc

上传人:茅**** 文档编号:87069046 上传时间:2023-04-16 格式:DOC 页数:21 大小:725.50KB
返回 下载 相关 举报
2022-2023学年河南省新乡市延津县重点中学中考数学最后冲刺模拟试卷含解析.doc_第1页
第1页 / 共21页
2022-2023学年河南省新乡市延津县重点中学中考数学最后冲刺模拟试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022-2023学年河南省新乡市延津县重点中学中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年河南省新乡市延津县重点中学中考数学最后冲刺模拟试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1式子有意义的x的取值范围是( )A且x1Bx1CD且x12下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )ABCD3已知A(x1,y1),B(x2

2、,y2)是反比例函数y(k0)图象上的两个点,当x1x20时,y1y2,那么一次函数ykxk的图象不经过()A第一象限 B第二象限 C第三象限 D第四象限4如果(x2)(x3)=x2pxq,那么p、q的值是( )Ap=5,q=6Bp=1,q=6Cp=1,q=6Dp=5,q=65将三粒均匀的分别标有,的正六面体骰子同时掷出,朝上一面上的数字分别为,则,正好是直角三角形三边长的概率是()ABCD6已知:如图,在ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若AGC的周长为31cm,AB=20cm,则ABC的周长为()A31cmB41cmC51cmD61cm76的绝对值是( )A6B6CD

3、8计算x2y(2x+y)的结果为()A3xyB3x3yCx3yDxy9四组数中:1和1;1和1;0和0;和1,互为倒数的是()ABCD10一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A2.18106 B2.18105 C21.8106 D21.8105二、填空题(本大题共6个小题,每小题3分,共18分)11一个扇形的面积是cm,半径是3cm,则此扇形的弧长是_12为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_13如图,在

4、ABC中,ABAC10cm,F为AB上一点,AF2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0t5),连D交CF于点G若CG2FG,则t的值为_14如图,AB、CD相交于点O,ADCB,请你补充一个条件,使得AODCOB,你补充的条件是_15解不等式组 请结合题意填空,完成本题的解答(1)解不等式,得_;(2)解不等式,得_;(3)把不等式和的解集在数轴上表示出来;(4)原不等式组的解集为_16如图,在RtABC中,ACB=90,AC=4,BC=3,点D为AB的中点,将ACD绕着点C逆时针旋转,使点A落在

5、CB的延长线A处,点D落在点D处,则DB长为_三、解答题(共8题,共72分)17(8分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF18(8分)如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,.(1)求教学楼的高度;(2)求的值.19(8分)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(4,0)求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线

6、上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标20(8分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整)请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处

7、要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?21(8分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率22(10分)如图,半圆O的直径AB5cm,点M在AB上且AM1cm,点P是半圆O上的动点,过点B作BQPM交PM(或P

8、M的延长线)于点Q设PMxcm,BQycm(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm11.522.533.54y/cm03.7_3.83.32.5_(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60时,PM的长度约为_cm23(12分)如图,在ABC中,C = 90,E是BC上一点,EDAB,垂足为D求证:ABCEBD24综合与

9、实践折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C处,点D落在点D处,射线EC与射线DA相交于点M猜想与证明:(1)如图1,当EC与线段AD交于点M时,判断MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段CD分别与AD,AB交于P,N两点时,CE与AB交于点Q

10、,连接MN 并延长MN交EF于点O 求证:MOEF 且MO平分EF;(4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D所经过的路径的长为 参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且故选A2、D【解析】根据中心对称图形的定义解答即可.【详解】选项A不是中心对称图形;选项B不是中心对称图形;选项C不是中心对称图形;选项D是中心对称图形.故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.3、B【解析】试题分析:当x1x20时,y1y2,

11、可判定k0,所以k0,即可判定一次函数y=kxk的图象经过第一、三、四象限,所以不经过第二象限,故答案选B考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系4、B【解析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值【详解】解:(x-2)(x+3)=x2+x-1,又(x-2)(x+3)=x2+px+q,x2+px+q=x2+x-1,p=1,q=-1故选:B【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加两个多项式相等时,它们同类项

12、的系数对应相等5、C【解析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.6、C【解析】DG是AB边的垂直平分线,GA=GB,AGC的

13、周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,ABC的周长=AC+BC+AB=51cm,故选C.7、A【解析】试题分析:1是正数,绝对值是它本身1故选A考点:绝对值8、C【解析】原式去括号合并同类项即可得到结果【详解】原式,故选:C【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.9、C【解析】根据倒数的定义,分别进行判断即可得出答案【详解】1和1;11=1,故此选项正确;-1和1;-11=-1,故此选项错误;0和0;00=0,故此选项错误;和1,-(-1)=1,故此选项正确;互为倒数的是:,故选C【点睛】此题主要考查了倒数的概念及性质倒数的定

14、义:若两个数的乘积是1,我们就称这两个数互为倒数10、A【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18106,故选A.【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据扇形面积公式求解即可【详解】根据扇形面积公式.可得:,故答案:.【点睛】本题主要考查了扇形的面积和弧长之间的关

15、系, 利用扇形弧长和半径代入公式即可求解, 正确理解公式是解题的关键. 注意在求扇形面积时, 要根据条件选择扇形面积公式.12、【解析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可【详解】解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为故答案为:【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适

16、用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验用到的知识点为:概率所求情况数与总情况数之比13、1【解析】过点C作CHAB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值【详解】如下图,过点C作CHAB交DE的延长线于点H,则,DFCH,同理,解得t1,t(舍去),故答案为:1【点睛】本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.14、AC或ADCABC【解析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可【详解】添加条件可以是:AC或ADCABC添加AC根据AAS判定A

17、ODCOB,添加ADCABC根据AAS判定AODCOB,故填空答案:AC或ADCABC【点睛】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键15、(1)x1;(2)x2;(1)见解析;(4)2x1;【解析】(1)先移项,再合并同类项,求出不等式1的解集即可;(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;(1)把两不等式的解集在数轴上表示出来即可;(4)根据数轴上不等式的解集,求出其公共部分即可.【详解】(1)解不等式,

18、得:x1;(2)解不等式,得:x2;(1)把不等式和的解集在数轴上表示出来如下:(4)原不等式组的解集为:2x1,故答案为:x1、x2、2x1【点睛】本题主要考查一元一次不等式组的解法及在数轴上的表示。16、【解析】试题分析:解:在RtABC中,ACB=90,AC=4,BC=3,AB=5,点D为AB的中点,CD=AD=BD=AB=2.5,过D作DEBC,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,CD=AD=AD,DE=1.5,AE=CE=2,BC=3,BE=1,BD=,故答案为考点:旋转的性质三、解答题(共8题,共72分)17、见解析【解析】根据条件可以得出AD=

19、AB,ABF=ADE=90,从而可以得出ABFADE,就可以得出FAB=EAD,就可以得出结论【详解】证明:四边形ABCD是正方形,AB=AD,ABC=D=BAD=90,ABF=90在BAF和DAE中, ,BAFDAE(SAS),FAB=EAD,EAD+BAE=90,FAB+BAE=90,FAE=90,EAAF18、(1)12m;(2)【解析】(1)利用即可求解;(2)通过三角形外角的性质得出,则,设,则,在 中利用勾股定理即可求出BC,BD的长度,最后利用即可求解【详解】解:(1)在中,答:教学楼的高度为;(2)设,则,故,解得:,则故【点睛】本题主要考查解直角三角形,掌握勾股定理及正切,余

20、弦的定义是解题的关键19、(1)(1)S=m14m+4(4m0)(3)(3,1)、(,1)、(,1)【解析】(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(1)先过点D作DHx轴于点H,运用割补法即可得到:四边形OCDA的面积=ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标【详解】(1)A(4,0)在二次函数y=ax1x+1(a0)的图象上,

21、0=16a+6+1,解得a=,抛物线的函数解析式为y=x1x+1;点C的坐标为(0,1),设直线AC的解析式为y=kx+b,则,解得,直线AC的函数解析式为:;(1)点D(m,n)是抛物线在第二象限的部分上的一动点,D(m,m1m+1),过点D作DHx轴于点H,则DH=m1m+1,AH=m+4,HO=m,四边形OCDA的面积=ADH的面积+四边形OCDH的面积,S=(m+4)(m1m+1)+(m1m+1+1)(m),化简,得S=m14m+4(4m0);(3)若AC为平行四边形的一边,则C、E到AF的距离相等,|yE|=|yC|=1,yE=1当yE=1时,解方程x1x+1=1得,x1=0,x1=

22、3,点E的坐标为(3,1);当yE=1时,解方程x1x+1=1得,x1=,x1=,点E的坐标为(,1)或(,1);若AC为平行四边形的一条对角线,则CEAF,yE=yC=1,点E的坐标为(3,1)综上所述,满足条件的点E的坐标为(3,1)、(,1)、(,1)20、(1)详见解析;(2)40%;(3)105;(4)【解析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论【详解】(1)由

23、条形图知,男生共有:10+20+13+9=52人,女生人数为100-52=48人,参加武术的女生为48-15-8-15=10人,参加武术的人数为20+10=30人,30100=30%,参加器乐的人数为9+15=24人,24100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%40%答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%(3)50021%=105(人)答:估计其中参加“书法”项目活动的有105人(4)答:正好抽到参加“器乐”活动项目的女生的概率为【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,

24、从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1)答案见解析;(2)【解析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率【详解】解:(1)列表如下:所有等可能的情况有12种; (2)一次函数y=kx+b的图象经过一、二、四象限时,k0,b0,情况有4种,则P= 22、(1

25、)4,1;(2)见解析;(3)1.1或3.2【解析】(1)当x=2时,PMAB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1(2)利用描点法画出函数图象即可;(3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;【详解】(1)当x2时,PMAB,此时Q与M重合,BQBM4,当x4时,点P与B重合,此时BQ1故答案为4,1(2)函数图象如图所示:(3)如图,在RtBQM中,Q91,MBQ61,BMQ31,BQBM2,观察图象可知y2时,对应的x的值为1.1或3.2故答案为1.1或3.2【点睛】本题考查圆的综合题,垂径定理,直角三角形的性质,解题的

26、关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.23、证明见解析【解析】试题分析:先根据垂直的定义得出EDB90,故可得出EDBC再由BB,根据有两个角相等的两三角形相似即可得出结论试题解析:解:EDAB, EDB90C90, EDBC BB, 点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键24、(1)MEF是等腰三角形(2)见解析(3)证明见解析(4) 【解析】(1)由ADBC,可得MFECEF,由折叠可得,MEFCEF,依据MFEMEF,即可得到MEMF,进而得出MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF

27、,依据轴对称的性质,即可得到D的位置;(3)依据BEQDFP,可得PFQE,依据NCPNAP,可得ANCN,依据RtMCNRtMAN,可得AMNCMN,进而得到MEF是等腰三角形,依据三线合一,即可得到MOEF 且MO平分EF;(4)依据点D所经过的路径是以O为圆心,4为半径,圆心角为240的扇形的弧,即可得到点D所经过的路径的长【详解】(1)MEF是等腰三角形理由:四边形ABCD是矩形,ADBC,MFE=CEF,由折叠可得,MEF=CEF,MFE=MEF,ME=MF,MEF是等腰三角形(2)折痕EF和折叠后的图形如图所示:(3)如图,FD=BE,由折叠可得,DF=DF,BE=DF,在NCQ和

28、NAP中,CNQ=ANP,NCQ=NAP=90,CQN=APN,CQN=BQE,APN=DPF,BQE=DPF,在BEQ和DFP中,BEQDFP(AAS),PF=QE,四边形ABCD是矩形,AD=BC,ADFD=BCBE,AF=CE,由折叠可得,CE=EC,AF=CE,AP=CQ,在NCQ和NAP中,NCPNAP(AAS),AN=CN,在RtMCN和RtMAN中,RtMCNRtMAN(HL),AMN=CMN,由折叠可得,CEF=CEF,四边形ABCD是矩形,ADBC,AFE=FEC,CEF=AFE,ME=MF,MEF是等腰三角形,MOEF 且MO平分EF;(4)在点E由点B运动到点C的过程中,点D所经过的路径是以O为圆心,4为半径,圆心角为240的扇形的弧,如图:故其长为L=故答案为【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 初中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁