《2022-2023学年黑龙江省重点中学中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年黑龙江省重点中学中考五模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是ABCD32如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若l=
2、65,则2的度数是()A25B35C45D653如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )A3个;B4个;C5个;D6个4如图,在中,点D为AC边上一点,则CD的长为( )A1BC2D5下列各数中,比1大1的是()A0 B1 C2 D36如果,那么代数式的值为( )A1B2C3D47化简:(a+)(1)的结果等于()Aa2Ba+2CD8下列运算正确的是()Aa2a3=a6B()1=2C =4D|6|=693的相反数是()AB3CD310随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD11
3、已知二次函数y=3(x1)2+k的图象上有三点A(,y1),B(2,y2),C(,y3),则y1、y2、y3的大小关系为()Ay1y2y3By2y1y3Cy3y1y2Dy3y2y112下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A1个B2个C3个D4个二、填空题:(本大题共6个小题,每小题4分,共24分)13双察下列等式:,则第n个等式为_(用含n的式子表示)14如果将“概率”的英文单词 probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是_15如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形
4、的周长比是_16如图,在矩形ABCD中,对角线AC与BD交于点O,动点P从点A出发,沿AB匀速运动,到达点B时停止,设点P所走的路程为x,线段OP的长为y,若y与x之间的函数图象如图所示,则矩形ABCD的周长为_ 17已知一元二次方程2x25x+1=0的两根为m,n,则m2+n2=_18已知b是a,c的比例中项,若a=4,c=16,则b=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中
5、信息解答下列问题:补全条形统计图,“体育”对应扇形的圆心角是 度;根据以上统计分析,估计该校名学生中喜爱“娱乐”的有 人;在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的人来自不同班级的概率20(6分)如图,ABC是等腰三角形,ABAC,点D是AB上一点,过点D作DEBC交BC于点E,交CA延长线于点F证明:ADF是等腰三角形;若B60,BD4,AD2,求EC的长,21(6分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并
6、将调查结果统计后绘制成如下统计表和扇形统计图 态度非常喜欢喜欢一般不知道频数90b3010频率a0.350.20 请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了 名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数22(8分)解方程23(8分)已知关于x的一元二次方程x2(2m+3)x+m2+21(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x2231+|x1x2|,求实数m的值24(10分)已知:如图,在矩形纸片ABCD中,翻折矩形纸片,使点A
7、落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF的长为多少;求AE的长;在BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由25(10分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(2,0),点P是线段AB上方抛物线上的一个动点(1)求抛物线的解析式;(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PEx轴交抛物线于点E,连结DE,请问是否存在点P使PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由26(12分)求
8、不等式组 的整数解.27(12分)在中, , 是的角平分线,交于点 .(1)求的长;(2)求的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点【详解】解:如图,AB的中点即数轴的原点O根据数轴可以得到点A表示的数是故选:B【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键2、A【解析】如图,过点C作CDa,再由平行线的性质即可得出结论【详解】如图,过点C作CDa,则1=ACD,ab,CD
9、b,2=DCB,ACD+DCB=90,1+2=90,又1=65,2=25,故选A【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键3、B【解析】分析:直接利用轴对称图形的性质进而分析得出答案详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个 故选B 点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键4、C【解析】根据DBC=A,C=C,判定BCDACB,根据相似三角形对应边的比相等得到代入求值即可.【详解】DBC=A,C=C,BCDACB, CD=2.故选:C.【点睛】主要考查相
10、似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.5、A【解析】用-1加上1,求出比-1大1的是多少即可【详解】-1+1=1,比-1大1的是1故选:A【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”6、A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得【详解】解:原式= = 3x-4y=0,3x=4y原式=1故选:A【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则7、B【解析】解:原式=故选B考点:分式的混合运算8、D【解析】运用正确的运算法则即可得出答案.【详解
11、】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.9、B【解析】根据相反数的定义与方法解答.【详解】解:3的相反数为.故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.10、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.11、D【解析】试题分析:根
12、据二次函数的解析式y3(x1)2k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3y2y1.故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.12、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形故选:C【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同
13、一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】探究规律后,写出第n个等式即可求解【详解】解:则第n个等式为 故答案为:【点睛】本题主要考查二次根式的应用,找到规律是解题的关键.14、【解析】分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率详解:英文单词probability中,一共有11个字母,其中字母b有2个,任取一张,那么取到字母b的概率为 故答案为点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比15、1
14、:4【解析】两个相似三角形对应边上的高的比为14,这两个相似三角形的相似比是1:4相似三角形的周长比等于相似比,它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.16、1【解析】分析:根据点P的移动规律,当OPBC时取最小值2,根据矩形的性质求得矩形的长与宽,易得该矩形的周长详解:当OPAB时,OP最小,且此时AP=4,OP=2,AB=2AP=8,AD=2OP=6,C矩形ABCD=2(AB+AD)=2(8+6)=1故答案为1 点睛:本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出AP=4,O
15、P=217、【解析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可【详解】由根与系数的关系得:m+n=,mn=,m2+n2=(m+n)2-2mn=()2-2=,故答案为:【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化18、8【解析】根据比例中项的定义即可求解.【详解】b是a,c的比例中项,若a=4,c=16,b2=ac=416=64,b=8,故答案为8【点睛】此题考查了比例中项的定义,如果作为比例线段的内项是两条
16、相同的线段,即ab=bc或,那么线段b叫做线段a、c的比例中项.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)72;(2)700;(3)【解析】试题分析:(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案试题解析:(1)调查的学生总数为6030%=200(人),则体育类人数为200(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360=72;(2)估计该
17、校2000名学生中喜爱“娱乐”的有:2000=700(人),(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P(2名学生来自不同班)=考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体20、(1)见解析;(2)EC1【解析】(1)由ABAC,可知BC,再由DEBC,可知F+C90,BDE+B90,然后余角的性质可推出FBDE,再根据对顶角相等进行等量代换即可推出FFDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论【详解】(1)ABAC,BC,FEBC,F+C90,BDE+B90,FBDE,而BDEFDA,FFDA,AFAD,ADF是
18、等腰三角形;(2)DEBC,DEB90,B60,BD1,BEBD2,ABAC,ABC是等边三角形,BCABAD+BD6,ECBCBE1【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出FFDA,即可推出结论21、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.【详解】解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根
19、据频数的计算公式可得,总数=频数/频率=(名);(2)“非常喜欢”频数90,a= ;(3).故答案为(1)200,;(2)a=0.45,b=70;(3)900名.【点睛】此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.22、x=-1【解析】解:方程两边同乘x-2,得2x=x-2+1解这个方程,得x= -1检验:x= -1时,x-20原方程的解是x= -1首先去掉分母,观察可得最简公分母是(x2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解23、(1)m;(2)m2【解析】(1)利用判别式的意义得到(2m+3)24(m2+2)
20、1,然后解不等式即可;(2)根据题意x1+x22m+3,x1x2m2+2,由条件得x12+x2231+x1x2,再利用完全平方公式得(x1+x2)23x1x2311,所以2m+3)23(m2+2)311,然后解关于m的方程,最后利用m的范围确定满足条件的m的值【详解】(1)根据题意得(2m+3)24(m2+2)1,解得m;(2)根据题意x1+x22m+3,x1x2m2+2,因为x1x2m2+21,所以x12+x2231+x1x2,即(x1+x2)23x1x2311,所以(2m+3)23(m2+2)311,整理得m2+12m281,解得m114,m22,而m;所以m2【点睛】本题考查了根与系数的
21、关系:若x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,灵活应用整体代入的方法计算24、(1);(2)的长为;(1)存在,画出点P的位置如图1见解析,的最小值为【解析】(1)根据勾股定理解答即可;(2)设AE=x,根据全等三角形的性质和勾股定理解答即可;(1)延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,利用相似三角形的判定和性质解答即可【详解】(1)矩形ABCD,DAB=90,AD=BC=1在RtADB中,DB故答案为5;(2)设AE=xAB=4,BE=4x,在矩形ABCD中,根据折叠的性质知:RtFDERtADE,FE=AE=x,FD=AD=BC=1,BF=B
22、DFD=51=2在RtBEF中,根据勾股定理,得FE2+BF2=BE2,即x2+4=(4x)2,解得:x,AE的长为;(1)存在,如图1,延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,则点P即为所求,此时有:PC=PG,PF+PC=GF过点F作FHBC,交BC于点H,则有FHDC,BFHBDC,即,GH=BG+BH在RtGFH中,根据勾股定理,得:GF,即PF+PC的最小值为【点睛】本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想25、(1)抛物线解析式为y=x2+2x+6
23、;(2)当t=3时,PAB的面积有最大值;(3)点P(4,6)【解析】(1)利用待定系数法进行求解即可得;(2)作PMOB与点M,交AB于点N,作AGPM,先求出直线AB解析式为y=x+6,设P(t,t2+2t+6),则N(t,t+6),由SPAB=SPAN+SPBN=PNAG+PNBM=PNOB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PHOB知DHAO,据此由OA=OB=6得BDH=BAO=45,结合DPE=90知若PDE为等腰直角三角形,则EDP=45,从而得出点E与点A重合,求出y=6时x的值即可得出答案【详解】(1)抛物线过点B(6,0)、C(2,0),设抛物线解析
24、式为y=a(x6)(x+2),将点A(0,6)代入,得:12a=6,解得:a=,所以抛物线解析式为y=(x6)(x+2)=x2+2x+6;(2)如图1,过点P作PMOB与点M,交AB于点N,作AGPM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:,解得:,则直线AB解析式为y=x+6,设P(t,t2+2t+6)其中0t6,则N(t,t+6),PN=PMMN=t2+2t+6(t+6)=t2+2t+6+t6=t2+3t,SPAB=SPAN+SPBN=PNAG+PNBM=PN(AG+BM)=PNOB=(t2+3t)6=t2+9t=(t3)2+,当t=3时,PAB的面
25、积有最大值;(3)PDE为等腰直角三角形,则PE=PD,点P(m,-m2+2m+6),函数的对称轴为:x=2,则点E的横坐标为:4-m,则PE=|2m-4|,即-m2+2m+6+m-6=|2m-4|,解得:m=4或-2或5+或5-(舍去-2和5+)故点P的坐标为:(4,6)或(5-,3-5)【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.26、-1,-1,0,1,1【解析】分析:先求出不等式组的解集,然后求出整数解详解:,由不等式,得:x1,由不等式,得:x3,故原不等式组的解集是1x3,不等式组的整数解是:1、1、0、1、1点睛:本题考查了解一元一次不等式的整数解,解答本题的关键是明确解一元一次不等式组的方法27、(1)10;(2)的长为【解析】(1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.【详解】解:(1) 在中, ;(2 )过点作于,平分,在和中 , .设,则在中, 解得即的长为【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理