《2022-2023学年广东省广州市第五中学中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省广州市第五中学中考猜题数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A16个B15个C13个D12个2若代数式,则M与N的大小关系是( )A
2、BCD3如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表: 转盘总次数10203050100150180240330450“和为7”出现频数27101630465981110150“和为7”出现频率0.200.350.330.320.300.300.330.340.330.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概
3、率为( )A0.33B0.34C0.20D0.354一个几何体的三视图如图所示,这个几何体是( )A三菱柱B三棱锥C长方体D圆柱体5我国古代数学著作九章算术卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为()ABCD6某商品价格为元,降价10后,又降价10,因销售量猛增,商店决定再提价20,提价后这种商品的价格为( )A0.96元B0.972元C1.08元D元7如图所示,某公司有三
4、个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB100米,BC200米为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A点AB点BCA,B之间DB,C之间8在实数3.5、0、4中,最小的数是()A3.5BC0D49如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD10如图,点M是正方形ABCD边CD上一点,连接MM,作DEAM于点E,BFAM于点F,连接BE,若AF1,四边形AB
5、ED的面积为6,则EBF的余弦值是()ABCD二、填空题(共7小题,每小题3分,满分21分)11在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_的(填“上升”或“下降”)12分解因式:=_13如图,ABC中,点D、E分别在边AB、BC上,DEAC,若DB=4,AB=6,BE=3,则EC的长是_14关于的分式方程的解为负数,则的取值范围是_.15如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;按照此规律,第n个图中正方形和等边三角形的个数
6、之和为_个16如图,在55的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_. (写出一个答案即可)17如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是_cm三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3)(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1;(2)将ABC绕原点O逆时针旋转90后得到A2B2C2,请画出A2B2C2;(3)判断以O,A1,B为顶点的三角形的形
7、状(无须说明理由)19(5分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,一次函数的图象与轴的正半轴交于点求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整图象:当时,写出的取值范围20(8分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
8、实际进货时,厂家对A型电脑出厂价下调m(0m100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案21(10分)如图,ABCD,12,求证:AMCN22(10分)如图,一次函数y=2x4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1(1)求反比例函数的解析式;(2)点P是x轴上一动点,ABP的面积为8,求P点坐标23(12分)如图,在ABC中,ACB=90,点D是AB上一点,以BD为直径的O和AB相切于点P(1)求证:BP平分ABC;(2)若PC=1,AP=3,求BC的长24(1
9、4分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线ADCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45,B=30,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】解:设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色
10、球的概率为25%, ,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个故选:D【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键2、C【解析】,.故选C.3、A【解析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值
11、越来越精确4、A【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱故选:B【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查5、D【解析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题【详解】由题意可得:,故选D【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组6、B【解析】提价后这种商品的价格=原价(1-降低的百分比)(1-百分比)(1+增长的百分比),把相关数值代入求值即可【详解】
12、第一次降价后的价格为a(1-10%)=0.9a元,第二次降价后的价格为0.9a(1-10%)=0.81a元,提价20%的价格为0.81a(1+20%)=0.972a元,故选B【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键7、A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理【详解】解:以点A为停靠点,则所有人的路程的和15100+103001(米),以点B为停靠点,则所有人的路程的和30100+1020
13、05000(米),以点C为停靠点,则所有人的路程的和30300+1520012000(米),当在AB之间停靠时,设停靠点到A的距离是m,则(0m100),则所有人的路程的和是:30m+15(100m)+10(300m)1+5m1,当在BC之间停靠时,设停靠点到B的距离为n,则(0n200),则总路程为30(100+n)+15n+10(200n)5000+35n1该停靠点的位置应设在点A;故选A【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短8、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在
14、实数3.5、0、4中,最小的数是4,故选D【点睛】掌握实数比较大小的法则9、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积10、B【解析】首先证明A
15、BFDEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于ABE的面积与ADE的面积之和得到xx+x1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解【详解】四边形ABCD为正方形,BAAD,BAD90,DEAM于点E,BFAM于点F,AFB90,DEA90,ABF+BAF90,EAD+BAF90,ABFEAD,在ABF和DEA中 ABFDEA(AAS),BFAE;设AEx,则BFx,DEAF1,四边形ABED的面积为6,解得x13,x24(舍去),EFx12,在RtBEF中,故选B【点睛】本题考查
16、了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质会运用全等三角形的知识解决线段相等的问题也考查了解直角三角形二、填空题(共7小题,每小题3分,满分21分)11、下降【解析】根据抛物线y=3x2+2x图像性质可得,在对称轴的左侧部分是下降的.【详解】解:在中,抛物线开口向上,在对称轴左侧部分y随x的增大而减小,即图象是下降的,故答案为下降【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.12、x(y+2)(y-2)【解析】原式提取x,再利用平方差公式分解即可【详解】原式=x(y2-4)=x(y+2)(y-2
17、),故答案为x(y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键13、【解析】由ABC中,点D、E分别在边AB、BC上,DEAC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案【详解】解:DEAC,DB:AB=BE:BC,DB=4,AB=6,BE=3,4:6=3:BC,解得:BC=,EC=BCBE=3=故答案为【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例14、【解析】分
18、式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a0,且1-a-1解得:a1且a2,故答案为: a1且a2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析15、9n+1【解析】第1个图由1个正六边形、6个正方形和6个等边三角形组成,正方形和等边三角形的和=6+6=12=9+1;第2个图由11个正方形和10个等边三角形组成,正方形和等边三角形的和=11+10=21=92+1;第1个图由16个正方形和14个等边三角形组成,正方形和等边三角形的和=16+14=10=91+1,第n个
19、图中正方形和等边三角形的个数之和=9n+1故答案为9n+116、答案不唯一,如:AD【解析】根据勾股定理求出,根据无理数的估算方法解答即可【详解】由勾股定理得:,故答案为答案不唯一,如:AD【点睛】本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是,斜边长为,那么17、 【解析】连接OA,作OMAB于点M,正六边形ABCDEF的外接圆半径为2cm正六边形的半径为2 cm, 即OA2cm在正六边形ABCDEF中,AOM=30,正六边形的边心距是OM= cos30OA=(cm)故答案为.三、解答题(共7小题,满分69分)18、(1)画图见解析;(2)画图见解析;(3)三角形的形状
20、为等腰直角三角形【解析】【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到A2B2C2,(3)根据勾股定理逆定理解答即可【详解】(1)如图所示,A1B1C1即为所求;(2)如图所示,A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B=,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方
21、法,找到对应点,顺次连接得出旋转后的图形19、(1)点的坐标为;(2);(3)或【解析】(1)点A在反比例函数上,轴,求坐标;(2)梯形面积,求出B点坐标,将点代入 即可;(3)结合图象直接可求解;【详解】解:(1)点在的图像上,轴,点的坐标为;(2)梯形的面积是3,解得,点的坐标为,把点与代入得解得:,一次函数的解析式为(3)由题意可知,作出函数和函数图像如下图所示:设函数和函数的另一个交点为E,联立 ,得 点E的坐标为 即 的函数图像要在的函数图像上面,可将图像分割成如下图所示:由图像可知所对应的自变量的取值范围为:或【点睛】本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法
22、求函数的表达式,数形结合求的取值范围是解题的关键20、 (1) 每台A型100元,每台B 150元;(2) 34台A型和66台B型;(3) 70台A型电脑和30台B型电脑的销售利润最大【解析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)据题意得,y=50x+15000,利用不等式求出x的范围,又因为y=50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x150(100x),即y=(m50)x+15000,分三种情况讨论,当0m50时,y随x的增大而减小,m=50时,m50=0,y=15000,当50m10
23、0时,m500,y随x的增大而增大,分别进行求解【详解】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得 答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元(2)据题意得,y=100x+150(100x),即y=50x+15000,据题意得,100x2x,解得x33,y=50x+15000,500,y随x的增大而减小,x为正整数,当x=34时,y取最大值,则100x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大(3)据题意得,y=(100+m)x+150(100x),即y=(m50)x+15000,33x70当0m50时,y
24、随x的增大而减小,当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大m=50时,m50=0,y=15000,即商店购进A型电脑数量满足33x70的整数时,均获得最大利润;当50m100时,m500,y随x的增大而增大,当x=70时,y取得最大值即商店购进70台A型电脑和30台B型电脑的销售利润最大【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况21、详见解析.【解析】只要证明EAM=ECN,根据同位角相等两直线平行即可证明.【详解】证明:ABCD,EAB=ECD,1=2,EAM=EC
25、N,AMCN【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握平行线的性质和判定,属于中考基础题22、(1)y=;(2)(4,0)或(0,0)【解析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x4,可得y=214=2,A(1,2),把(1,2)代入y=,可得k=12=6,反比例函数的解析式为y=;(2)根据题意可得:2x4=,解得x1=1,x2=1,把x2=1,代入y=2x4,可得y=6,点B的坐标为(1,6)设直线
26、AB与x轴交于点C,y=2x4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则|x2|(2+6)=8,解得x=4或0,点P的坐标为(4,0)或(0,0)【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。23、(1)证明见解析;(2) 【解析】试题分析:(1)连接OP,首先证明OPBC,推出OPB=PBC,由OP=OB,推出OPB=OBP,由此推出PBC=OBP;(2)作PHAB于H首先证明PC=PH=1,在RtAPH中,求出AH,由APHABC,求出AB、BH,由RtPBCRtPBH,推出BC=BH即可解决问题.试题解析:(
27、1)连接OP,AC是O的切线,OPAC, APO=ACB=90,OPBC,OPB=PBC,OP=OB,OPB=OBP,PBC=OBP,BP平分ABC;(2)作PHAB于H则AHP=BHP=ACB=90,又PBC=OBP,PB=PB,PBCPBH ,PC=PH=1,BC=BH,在RtAPH中,AH=,在RtACB中,AC2+BC2=AB2(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得 24、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km【解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向A
28、B作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作CHAB于点H,如图所示,BC=12km,B=30,km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DMAB于点M,如图所示,桥DC和AB平行,CH=6km,DM=CH=6km,DMA=90,B=45,MH=EF=DC,AD=km,AM=DM=6km,现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)(AM+MH+BH)=AD+DC+BCAMMHBH=AD+BCAMBH=km,即现在从A地到达B地可比原来少走的路程是4.1km【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.