《2022-2023学年广东省深圳市福田区十校联考中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省深圳市福田区十校联考中考猜题数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手12345678910时间(min)129136140145146148154158165175由此所
2、得的以下推断不正确的是( )A这组样本数据的平均数超过130B这组样本数据的中位数是147C在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好2从 ,0, ,6这5个数中随机抽取一个数,抽到有理数的概率是()ABCD3如图,O的直径AB与弦CD的延长线交于点E,若DE=OB,AOC=84,则E等于()A42B28C21D204若,则的值为( )A6 B6 C18 D305下列各式中,不是多项式2x24x+2的因式的是()A2B2(x1)C(x1)2D2(x2)6已知空气的单位体积质量是0.001239g/c
3、m3,则用科学记数法表示该数为( )A1.239103g/cm3B1.239102g/cm3C0.1239102g/cm3D12.39104g/cm37运用图形变化的方法研究下列问题:如图,AB是O的直径,CD,EF是O的弦,且ABCDEF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )ABCD8如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A0.7米B1.5米C2.2米D2.4米9小手盖住的点的坐标可能为( )ABCD10如图,剪两
4、张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()AABCADC,BADBCDBABBCCABCD,ADBCDDAB+BCD18011关于x的方程x2+(k24)x+k+1=0的两个根互为相反数,则k值是()A1B2C2D212若抛物线yx23x+c与y轴的交点为(0,2),则下列说法正确的是()A抛物线开口向下B抛物线与x轴的交点为(1,0),(3,0)C当x1时,y有最大值为0D抛物线的对称轴是直线x二、填空题:(本大题共6个小题,每小题4分,共24分)13在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图
5、中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是_,的坐标是_14请写出一个 开口向下,并且与y轴交于点(0,1)的抛物线的表达式_15两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的
6、关系如图所示,求乙车修好时,甲车距地还有_千米.16规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn+0.5,n为整数),例如:1.3=1,(1.3)=3,1.3)=1则下列说法正确的是_(写出所有正确说法的序号)当x=1.7时,x+(x)+x)=6;当x=1.1时,x+(x)+x)=7;方程4x+3(x)+x)=11的解为1x1.5;当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有两个交点17口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_18若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥
7、的母线长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知AB是O的直径,BCAB,连结OC,弦ADOC,直线CD交BA的延长线于点E(1)求证:直线CD是O的切线;(2)若DE2BC,AD5,求OC的值20(6分)如图,经过点C(0,4)的抛物线()与x轴相交于A(2,0),B两点(1)a 0, 0(填“”或“”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在
8、,求出满足条件的点E的坐标;若不存在,请说明理由21(6分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转 270后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.求证:AP=BQ;当BQ= 时,求的长(结果保留 );若APO的外心在扇形COD的内部,求OC的取值范围.22(8分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1(1810)=0.8(元),因此所买的1
9、8只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?23(8分)如图,反比例函数y=(x0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2过点B作CBOA,交x
10、轴于点C,求点C的坐标24(10分)小明遇到这样一个问题:已知:. 求证:.经过思考,小明的证明过程如下:,.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.25(10分)已知函数的图象与函数的图象交于点.(1)若,求的值和点P的坐标;(2)当时,结合函数图象,直接写出实数的取值范围.26(12分)计算:.化简:.27(12分)已知:关于x的方程x2(2m+1)x+2m=0(1)
11、求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解详解:平均数=(129+136+140+145+146+148+154+158+165+175)10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五
12、位和第六位的平均数,故中位数是(146+148)2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位2、C【解析】根据有理数的定义可找出在从,0,6这5个数中只有0、6为有理数,再根据概率公式即可求出抽到有理数的概率【详解】在,0,6这5个数中有理数只有0、6这3个数,抽到有理数的概率是,故选C【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键3、B【解析】利用OB=DE,OB=OD得到DO=DE,则E=DOE,根据三角形外角性质得1=DO
13、E+E,所以1=2E,同理得到AOC=C+E=3E,然后利用E=AOC进行计算即可【详解】解:连结OD,如图,OB=DE,OB=OD,DO=DE,E=DOE,1=DOE+E,1=2E,而OC=OD,C=1,C=2E,AOC=C+E=3E,E=AOC=84=28故选:B【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)也考查了等腰三角形的性质4、B【解析】试题分析:,即,原式=12+18=1故选B考点:整式的混合运算化简求值;整体思想;条件求值5、D【解析】原式分解因式,判断即可【详解】原式2(x22x+1)2(x1)2。故选:D【点睛】考查了提
14、公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键6、A【解析】试题分析:0.001219=1.219101故选A考点:科学记数法表示较小的数7、A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明SOCD=SACD,SOEF=SAEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解【详解】作直径CG,连接OD、OE、OF、DGCG是圆的直径,CDG=90,则DG=8,又EF=8,DG=EF,S扇形ODG=S扇形OEF,ABCDEF,S
15、OCD=SACD,SOEF=SAEF,S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=52=,故选A【点睛】本题考查扇形面积的计算,圆周角定理本题中找出两个阴影部分面积之间的联系是解题的关键8、C【解析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在RtABD中,ADB=90,AD=2米,BD2+AD2=AB2,BD2+22=6.25,BD2=2.25,BD0,BD=1.5米,CD=BC+BD=0.7+1.5=2.2米故选C【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.9、B【解析】根据题意,小手盖住的点在第四象限,结合第四象限点
16、的坐标特点,分析选项可得答案【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合故选:B【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)10、D【解析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形所以根据菱形的性质进行判断【详解】解:四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,四边形是平行四边形(对边相互平行的四边形是平行四边形);过点分别作,边上的高为,则(
17、两纸条相同,纸条宽度相同);平行四边形中,即,即故正确;平行四边形为菱形(邻边相等的平行四边形是菱形),(菱形的对角相等),故正确;,(平行四边形的对边相等),故正确;如果四边形是矩形时,该等式成立故不一定正确故选:【点睛】本题考查了菱形的判定与性质注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”11、D【解析】根据一元二次方程根与系数的关系列出方程求解即可【详解】设方程的两根分别为x1,x1,x1+(k1-4)x+k-1=0的两实数根互为相反数,x1+x1,=-(k1-4)=0,解得k=1,当k=1,方程变为:x1+1=0,=-40,方程没有实数根,所以k=1舍去;当k=
18、-1,方程变为:x1-3=0,=110,方程有两个不相等的实数根;k=-1故选D【点睛】本题考查的是根与系数的关系x1,x1是一元二次方程ax1+bx+c=0(a0)的两根时,x1+x1= ,x1x1= ,反过来也成立.12、D【解析】A、由a=10,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确综上即可得出结论【详解】解
19、:A、a=10,抛物线开口向上,A选项错误;B、抛物线y=x1-3x+c与y轴的交点为(0,1),c=1,抛物线的解析式为y=x1-3x+1当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、抛物线开口向上,y无最大值,C选项错误;D、抛物线的解析式为y=x1-3x+1,抛物线的对称轴为直线x=-=-=,D选项正确故选D【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键二、填空题:(本大题共6个小题
20、,每小题4分,共24分)13、 【解析】设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论【详解】设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)2018=4504+2,K2018为(1009,0)故答案为:(),(1009,0)【点睛】本题考查了规律型中的点的坐标,解题的关键是找出
21、变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键14、(答案不唯一)【解析】根据二次函数的性质,抛物线开口向下a0,与y轴交点的纵坐标即为常数项,然后写出即可【详解】抛物线开口向下,并且与y轴交于点(0,1)二次函数的一般表达式中,a0,c=1,二次函数表达式可以为:(答案不唯一).【点睛】本题考查二次函数的性质,掌握开口方向、与y轴的交点与二次函数二次项系数、常数项的关系是解题的关键.15、90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从
22、而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.【详解】甲车先行40分钟(),所行路程为30千米,因此甲车的速度为(千米/时),设乙车的初始速度为V乙,则有,解得:(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t1小时,修好后走了t2小时,则有,解得:,452=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能
23、从题中找到必要的等量关系列方程组进行求解是关键.16、【解析】试题解析:当x=1.7时,x+(x)+x)=1.7+(1.7)+1.7)=1+1+1=5,故错误;当x=1.1时,x+(x)+x)=1.1+(1.1)+1.1)=(3)+(1)+(1)=7,故正确;当1x1.5时,4x+3(x)+x)=41+31+1=4+6+1=11,故正确;1x1时,当1x0.5时,y=x+(x)+x=1+0+x=x1,当0.5x0时,y=x+(x)+x=1+0+x=x1,当x=0时,y=x+(x)+x=0+0+0=0,当0x0.5时,y=x+(x)+x=0+1+x=x+1,当0.5x1时,y=x+(x)+x=0
24、+1+x=x+1,y=4x,则x1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有三个交点,故错误,故答案为考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组17、【解析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.【详解】从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,从中随意摸出两个球的概率=;故答案为:.【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;
25、树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比18、2【解析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长依此列出方程即可【详解】设母线长为x,根据题意得2x2=25,解得x=1故答案为2【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)【解析】试题分析:(1)首选连接OD,易证得CODCOB(SAS),然后由全等三角形的对应角相等,求得CDO=90,即可证得
26、直线CD是O的切线;(2)由CODCOB可得CD=CB,即可得DE=2CD,易证得EDAECO,然后由相似三角形的对应边成比例,求得AD:OC的值试题解析:(1)连结DO ADOC,DAO=COB,ADO=COD又OA=OD,DAO=ADO,COD=COB 3分又COCO, ODOBCODCOB(SAS) 4分CDO=CBO=90又点D在O上,CD是O的切线(2)CODCOBCD=CBDE=2BC,ED=2CDADOC,EDAECO,考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质20、(1),;(2);(3)E(4,4)或(,4)或(,4)【解析】(1)由抛物线开口向
27、上,且与x轴有两个交点,即可做出判断;(2)根据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;(3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CEx轴,交抛物线于点E,过点E作EFAC,交x轴于点F,如图1所示;(ii)假设在抛物线上还存在点E,使得以A,C,F,E为顶点所组成的四边形是平行四边形,过点E作EFAC交x轴于点F,则四边形ACFE即为满足条件的平行四边形,可得AC=EF,ACEF,如图2,过点E作EGx轴于点G,分别求出E坐标即可【详解】(1)a0,0;(2
28、)直线x=2是对称轴,A(2,0),B(6,0),点C(0,4),将A,B,C的坐标分别代入,解得:,抛物线的函数表达式为;(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CEx轴,交抛物线于点E,过点E作EFAC,交x轴于点F,如图1所示,则四边形ACEF即为满足条件的平行四边形,抛物线关于直线x=2对称,由抛物线的对称性可知,E点的横坐标为4,又OC=4,E的纵坐标为4,存在点E(4,4);(ii)假设在抛物线上还存在点E,使得以A,C,F,E为顶点所组成的四边形是平行四边形,过点E作EFAC交x轴于点F,则四边形ACFE即为满足条件的平
29、行四边形,AC=EF,ACEF,如图2,过点E作EGx轴于点G,ACEF,CAO=EFG,又COA=EGF=90,AC=EF,CAOEFG,EG=CO=4,点E的纵坐标是4,解得:,点E的坐标为(,4),同理可得点E的坐标为(,4)21、(1)详见解析;(2);(3)4OC1时,结合图象可知此时|m|n|,当时,1.【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.26、(1)5;(2)-3x+4【解析】(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.(2)利用完全平方公式和去括号法则进行计算,再进行合并
30、同类项运算.【详解】(1)解:原式 (2)解:原式【点睛】本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.27、 (1)详见解析;(2)当x10,x20或当x10,x20时,m=;当x10,x20时或x10,x20时,m=【解析】试题分析:(1)根据判别式0恒成立即可判断方程一定有两个实数根;(2)先讨论x1,x2的正负,再根据根与系数的关系求解试题解析:(1)关于x的方程x2(2m+1)x+2m=0,=(2m+1)28m=(2m1)20恒成立,故方程一定有两个实数根;(2)当x10,x20时,即x1=x2,=(2m1)2=0,解得m=;当x10,x20时或x10,x20时,即x1+x2=0,x1+x2=2m+1=0,解得:m=;当x10,x20时,即x1=x2,=(2m1)2=0,解得m=;综上所述:当x10,x20或当x10,x20时,m=;当x10,x20时或x10,x20时,m=