《2022-2023学年福州市重点中学中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福州市重点中学中考数学全真模拟试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若点A(a,b),B(,c)都在反比例函数y的图象上,且1c0,则一次函数y(bc)x+ac的大致图象是()ABCD2某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1部门人数每人所创年利润(单位:万元)11938743这11名员工每人所创年利润的众数、平均数分别是A10,1B7,8C1,6.1D1,63下列运算正确的是()Aa2+a3=a5B(a3)2a6=1Ca2a3=a6D(+)2=54剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是()ABCD5若3
3、x3y,则下列不等式中一定成立的是 ( )ABCD6下面几何的主视图是( )ABCD7如图,已知垂直于的平分线于点,交于点, ,若的面积为1,则的面积是( )ABCD8在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:成绩(米)人数则这名运动员成绩的中位数、众数分别是( )ABC,D9如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )A点的左边B点与点之间C点与点之间D点的右边10某公园里鲜花的摆放如图所示,第个图形中有3盆鲜花,第个图形中有6盆鲜花,第个图形中有11盆鲜花,按此规律,则第个图形中的鲜花盆数为()A37B38C50D51二、填空题(共
4、7小题,每小题3分,满分21分)11在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心已知:求作:所在圆的圆心曈曈的作法如下:如图2,(1)在上任意取一点,分别连接,;(2)分别作弦,的垂直平分线,两条垂直平分线交于点点就是所在圆的圆心老师说:“曈曈的作法正确”请你回答:曈曈的作图依据是_12把多项式a32a2+a分解因式的结果是 13对于实数x,我们规定x表示不大于x的最大整数,例如1.1=1,3=3,2.2=3,若=5,则x的取值范围是_14出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_元,一天出售该种手工艺品的总利润y最大15如图,AB是O的直径,且经过弦CD的中
5、点H,过CD延长线上一点E作O的切线,切点为F若ACF=65,则E= 16的算术平方根是_17如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD100,AE200,AB40,AC20,BC30,则通过计算可得DE长为_三、解答题(共7小题,满分69分)18(10分)如图,抛物线经过点A(2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果PBO=BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DEx轴交新抛物线于点E,射线EO交新抛
6、物线于点F,如果EO=2OF,求m的值.19(5分)为了解朝阳社区岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图请根据图中信息解答下列问题:求参与问卷调查的总人数补全条形统计图该社区中岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数20(8分)如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(2,1),B(1,4),C(3,2)画出ABC关于点B成中心对称的图形A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出ABC放大后的图形A2B2C2,并直接写出C2的坐标2
7、1(10分)如图,已知ABC,按如下步骤作图:分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;连接MN,分别交AB、AC于点D、O;过C作CEAB交MN于点E,连接AE、CD(1)求证:四边形ADCE是菱形;(2)当ACB=90,BC=6,ADC的周长为18时,求四边形ADCE的面积22(10分)如图1,反比例函数(x0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC75,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l
8、x轴,与AC相交于点N,连接CM,求CMN面积的最大值23(12分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m)与时间(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量(2)求当0x60时,水库的总蓄水量y万(万m)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m为严重干旱,直接写出发生严重干旱时x的范围24(14分)已知关于x的一元二次方
9、程x2mx20若x1是方程的一个根,求m的值和方程的另一根;对于任意实数m,判断方程的根的情况,并说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】将,代入,得,然后分析与的正负,即可得到的大致图象.【详解】将,代入,得,即,即与异号又,故选D【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.2、D【解析】根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可【详解】解:这11个数据的中位数是第8个数据,且中位数为1,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、
10、19,所以这组数据的众数为1万元,平均数为万元故选:【点睛】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键3、B【解析】利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误故选:B【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运
11、算,再合并即可解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍4、C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既不是中心对称图形,也不是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误,故选C【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转1
12、80后,能与原图形重合,那么就说这个图形是中心对称图形.5、A【解析】两边都除以3,得xy,两边都加y,得:x+y0,故选A6、B【解析】主视图是从物体正面看所得到的图形【详解】解:从几何体正面看故选B【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图7、B【解析】先证明ABDEBD,从而可得AD=DE,然后先求得AEC的面积,继而可得到CDE的面积.【详解】BD平分ABC,ABD=EBD,AEBD,ADB=EDB=90,又BD=BD,ABDEBD,AD=ED,的面积为1,SAEC=SABC=,又AD=ED,SCDE= SAEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握
13、等高的两个三角形的面积之比等于底边长度之比是解题的关键.8、D【解析】根据中位数、众数的定义即可解决问题【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1故选:D【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.9、C【解析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解【详解】|a|c|b|,点A到原点的距离最大,点C其次,点B最小,又AB=BC,原点O的位置是在点B、C之间且靠近点B的地方故选:C【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键10、D【解析】试题解
14、析:第个图形中有 盆鲜花,第个图形中有盆鲜花,第个图形中有盆鲜花,第n个图形中的鲜花盆数为则第个图形中的鲜花盆数为故选C.二、填空题(共7小题,每小题3分,满分21分)11、线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的轨迹是圆)【解析】(1)在上任意取一点,分别连接,;(2)分别作弦,的垂直平分线,两条垂直平分线交于点点就是所在圆的圆心【详解】解:根据线段的垂直平分线的性质定理可知:,所以点是所在圆的圆心(理由线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的轨迹是圆):)故答案为线段垂直平分线上的点到线段两端点的距离相等圆的定义(
15、到定点的距离等于定长的点的轨迹是圆)【点睛】本题考查作图复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型12、【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式因此,13、11x1【解析】根据对于实数x我们规定x不大于x最大整数,可得答案【详解】由=5,得: ,解得11x1,故答案是:11x1【点睛】考查了解一元一次不等式组,利用x不大于x最大整数得出不等式组是解题关键14、1【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数
16、的最值问题进行解答解:出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,y=(8-x)x,即y=-x2+8x,当x=- =1时,y取得最大值故答案为:115、50【解析】解:连接DF,连接AF交CE于G,EF为O的切线,OFE=90,AB为直径,H为CD的中点ABCD,即BHE=90,ACF=65,AOF=130,E=360-BHE-OFE-AOF=50,故答案为:50.16、【解析】=8,()2=8,的算术平方根是.故答案为:. 17、1【解析】先根据相似三角形的判定得出ABCAED,再利用相似三角形的性质解答即可【详解】 又A=A,ABCAED, BC=30,DE=1,故答案为1.
17、【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.三、解答题(共7小题,满分69分)18、(1);(2)P(1,); (3)3或5.【解析】(1)将点A、B代入抛物线,用待定系数法求出解析式.(2)对称轴为直线x=1,过点P作PGy轴,垂足为G, 由PBO=BAO,得tanPBO=tanBAO,即,可求出P的坐标.(3)新抛物线的表达式为,由题意可得DE=2,过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.【详解】解:(1)抛物线经过点A(2,0),点B(0,4),解得,抛物线解析
18、式为,(2),对称轴为直线x=1,过点P作PGy轴,垂足为G,PBO=BAO,tanPBO=tanBAO,,,,,P(1,),(3)设新抛物线的表达式为则,,DE=2过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.点D在y轴的正半轴上,则,,,m=3,点D在y轴的负半轴上,则,,,m=5,综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.19、(1)参与问卷调查的总人数为500人;(2)补全条形统计图见解析;(3)这些人中最喜欢微信支付方式的人数约为2800人【解析】(1)根据喜欢支付宝支付的人数其所占各种支付方
19、式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(4160岁)=参与问卷调查的总人数现金支付所占各种支付方式的比例-15,即可求出喜欢现金支付的人数(4160岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数微信支付所占各种支付方式的比例,即可求出结论【详解】(1)(人答:参与问卷调查的总人数为500人(2)(人补全条形统计图,如图所示(3)(人答:这些人中最喜欢微信支付方式的人数约为2800人【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金
20、支付的人数(4160岁);(3)根据样本的比例总人数,估算出喜欢微信支付方式的人数20、(1)画图见解析;(2)画图见解析,C2的坐标为(6,4)【解析】试题分析:利用关于点对称的性质得出的坐标进而得出答案;利用关于原点位似图形的性质得出对应点位置进而得出答案试题解析:(1)A1BC1如图所示(2)A2B2C2如图所示,点C2的坐标为(6,4)21、(1)详见解析;(2)1【解析】(1)利用直线DE是线段AC的垂直平分线,得出ACDE,即AOD=COE=90,从而得出AODCOE,即可得出四边形ADCE是菱形.(2)利用当ACB=90时,ODBC,即有ADOABC,即可由相似三角形的性质和勾股
21、定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.【详解】(1)证明:由题意可知:分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;直线DE是线段AC的垂直平分线,ACDE,即AOD=COE=90;且AD=CD、AO=CO,又CEAB,1=2,在AOD和COE中 AODCOE(AAS),OD=OE,A0=CO,DO=EO,四边形ADCE是平行四边形,又ACDE,四边形ADCE是菱形;(2)解:当ACB=90时,ODBC,即有ADOABC, 又BC=6,OD=3,又ADC的周长为18,AD+AO=9, 即AD=9AO, 可得AO=4,DE=6,AC=8, 【
22、点睛】考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.22、(1);(2),;(3)【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BHAD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=21,BH=21,可判断ABH为等腰直角三角形,所以BAH=45,得到DAC=BACBAH=30,根据特殊角的三角函数值得tanDAC=;由于ADy轴,则OD=1,AD=2,然后在RtOAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,1),于是可根据待定系数法求出直线AC的解析式为y=x1;(3)利用M点在反比
23、例函数图象上,可设M点坐标为(t,)(0t2),由于直线lx轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t1),则MN=t+1,根据三角形面积公式得到SCMN=t(t+1),再进行配方得到S=(t)2+(0t2),最后根据二次函数的最值问题求解试题解析:(1)把A(2,1)代入y=,得k=21=2;(2)作BHAD于H,如图1,把B(1,a)代入反比例函数解析式y=,得a=2,B点坐标为(1,2),AH=21,BH=21,ABH为等腰直角三角形,BAH=45,BAC=75,DAC=BACBAH=30,tanDAC=tan30=;ADy轴,OD
24、=1,AD=2,tanDAC=,CD=2,OC=1,C点坐标为(0,1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,1)代入得 ,解得 ,直线AC的解析式为y=x1;(3)设M点坐标为(t,)(0t2),直线lx轴,与AC相交于点N,N点的横坐标为t,N点坐标为(t, t1),MN=(t1)=t+1,SCMN=t(t+1)=t2+t+=(t)2+(0t2),a=0,当t=时,S有最大值,最大值为23、(1)y1=-20x+1200, 800;(2)15x40.【解析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y2=kx+b,把(20,0)和(60,1000)代
25、入求出解析式,在已知范围内求出解即可.【详解】解:(1)设y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,当x=20时,y1=-2020+1200=800,(2)设y2=kx+b,把(20,0)和(60,1000)代入得则,所以y2=25x-500,当0x20时,y=-20x+1200,当20x60时,y=y1+y2=-20x+1200+25x-500=5x+700,由题意解得该不等式组的解集为15x40所以发生严重干旱时x的范围为15x40.【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.24、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式与1的关系进行判断(1)把x=-1代入得1+m-2=1,解得m=12-2=1另一根是2;(2),方程有两个不相等的实数根考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式的关系:当1,方程有两个不相等的实数根;当=1,方程有两个相等的实数根;当1,方程没有实数根