《2022-2023学年安庆九一六校中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安庆九一六校中考试题猜想数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上)为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米
2、到达C处,在C处观察B地的俯角为,则A、B两地之间的距离为()A800sin米B800tan米C米D米2施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务设原计划每天施工x米,所列方程正确的是()A=2B=2C=2D=23如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC的度数为( )A90B60C45D304如图,在四边形ABCD中,对角线 ACBD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点若AC=10,BD=6,则四边形EFGH的面积为()A20B15C30D605设x1,x2是一元二次方程x22x50的两
3、根,则x12+x22的值为()A6B8C14D166若分式在实数范围内有意义,则实数的取值范围是( )ABCD7下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()Ay=(x2)2+1 By=(x+2)2+1Cy=(x2)23 Dy=(x+2)238如图1,将三角板的直角顶点放在直角尺的一边上,1=30,2=50,则3的度数为A80B50C30D209如图,若数轴上的点A,B分别与实数1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A2B3C4D510估计的运算结果应在哪个两个连续自然数之间()A2和1B3和2C4和3D5和4二、填空题(共7小题,每小题3分,满分21
4、分)11点A到O的最小距离为1,最大距离为3,则O的半径长为_12如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为_.13计算(+1)(-1)的结果为_14有一个正六面体,六个面上分别写有16这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是_15如图,与是以点为位似中心的位似图形,相似比为,若点的坐标是,则点的坐标是_16如果2,那么=_(用向量,表示向量)17计算:的结果是_三、解答题(共7小题,满分69分)18(10分)如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线
5、于点F,连接CF,求证:AF=DC;若ABAC,试判断四边形ADCF的形状,并证明你的结论19(5分)(1)计算:;(2)先化简,再求值:,其中a=20(8分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案(1)请聪明的你将下面图、图、图的等边三角形分别割成2个、3个、4个全等三角形;(2)如图,等边ABC边长AB4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且MON120,若四边形BMON的面积为s,它的周长记为l,求最小值;(3)如图,等边ABC的边长AB4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,
6、且PDQ120,若PAx,请用含x的代数式表示BDQ的面积SBDQ21(10分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线ADCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45,B=30,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)22(10分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止
7、运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM(参考数据:sin15=,cos15=,tan15=2)(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;(2)在点E、F运动过程中,判断AE与AM的数量关系,并说明理由;AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;(3)如图2,连接NF,在点E、F运动过程中,ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由23(12分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行
8、过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示)求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度24(14分)抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为(1)抛物线的对称轴是直线_;(2)当时,求抛物线的函数表达式;(3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】【分析】在RtABC中,CAB=90,B=,AC=800
9、米,根据tan=,即可解决问题.【详解】在RtABC中,CAB=90,B=,AC=800米,tan=,AB=,故选D【点睛】本题考查解直角三角形的应用仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.2、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间实际所用时间=2,列出方程即可详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选A点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程3、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可试题解析:
10、连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=()1+()1=()1AC1+BC1=AB1ABC是等腰直角三角形ABC=45故选C考点:勾股定理4、B【解析】有一个角是直角的平行四边形是矩形利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可【详解】点E、F分别为四边形ABCD的边AD、AB的中点,EFBD,且EF=BD=1同理求得EHACGF,且EH=GF=AC=5,又ACBD,EFGH,FGHE且EFFG四边形EFGH是矩形四边形EFGH的面积=EFEH=15=2,即四边形EFGH的面积是2故选B【点睛】本题考查的是中点四边形解题时,利用了矩形的判定以及矩形的定
11、理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(1)对角线互相平分且相等的四边形是矩形5、C【解析】根据根与系数的关系得到x1+x2=2,x1x2=-5,再变形x12+x22得到(x1+x2)2-2x1x2,然后利用代入计算即可【详解】一元二次方程x2-2x-5=0的两根是x1、x2,x1+x2=2,x1x2=-5,x12+x22=(x1+x2)2-2x1x2=22-2(-5)=1故选C【点睛】考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1x2= 6、D【解析】根据分式有意义
12、的条件即可求出答案【详解】解:由分式有意义的条件可知:,故选:【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.7、C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为8、D【解析】试题分析:根据平行线的性质,得4=2=50,再根据三角形的外角的性质3=4-1=50-30=20故答案选D考点:平行线的性质;三角形的外角的性质9、B【解析】由数轴上的点A、B 分别与实数1,1对应,即
13、可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数【详解】数轴上的点 A,B 分别与实数1,1 对应,AB=|1(1)|=2,BC=AB=2,与点 C 对应的实数是:1+2=3. 故选B【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键10、C【解析】根据二次根式的性质,可化简得=3=2,然后根据二次根式的估算,由324可知2在4和3之间故选C点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.二、填空题(共7小题,每小题3分,满分21分)11、1或2【解析】分类讨论:点在圆内,点在圆外,根据线
14、段的和差,可得直径,根据圆的性质,可得答案【详解】点在圆内,圆的直径为1+3=4,圆的半径为2;点在圆外,圆的直径为31=2,圆的半径为1,故答案为1或2.【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.12、【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度圆柱底面的周长为4dm,圆柱高为2dm,AB=2dm,BC=BC=2dm,AC2=22+22=8,AC=2dm这圈金属丝的周长最小为2AC=4dm故答案为:4dm【点睛】本
15、题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键13、1【解析】利用平方差公式进行计算即可.【详解】原式=()21=21=1,故答案为:1【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式14、 【解析】投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,其概率是=【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果
16、,那么事件A的概率P(A)=15、(2,2) 【解析】分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是 则在中,它的对应点的坐标是或,进而求出即可详解:与是以点为位似中心的位似图形, ,若点的坐标是, 过点作交于点E. 点的坐标为:与的相似比为,点的坐标为:即点的坐标为:故答案为:点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.16、【解析】2(+)=+,2+2=+,=-2,故答案为.点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.17、【解析】试题分析
17、:先进行二次根式的化简,然后合并同类二次根式即可,考点:二次根式的加减三、解答题(共7小题,满分69分)18、(1)见解析(2)见解析【解析】(1)根据AAS证AFEDBE,推出AF=BD,即可得出答案(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可【详解】解:(1)证明:AFBC, AFE=DBEE是AD的中点,AD是BC边上的中线,AE=DE,BD=CD在AFE和DBE中,AFE=DBE,FEA=BED, AE=DE,AFEDBE(AAS)AF=BDAF=DC(2)四边形ADCF是菱形,证明如下:AFBC,AF=DC,四边形ADCF是
18、平行四边形ACAB,AD是斜边BC的中线,AD=DC平行四边形ADCF是菱形19、(1)2016;(2)a(a2),【解析】试题分析:(1)分别根据0指数幂及负整数指数幂的计算法则、特殊角的三角函数值、绝对值的性质及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法,最后把a的值代入进行计算即可试题解析:(1)原式=2016;(2)原式=a(a2),当a=时,原式=20、(1)详见解析;(2)2+2;(3)SBDQx+【解析】(1)根据要求利用全等三角形的判定和性质画出图形即可(2)如图中,作OEAB于E,OFBC于F,连接OB证明OEMOFN(ASA
19、),推出EMFN,ONOM,SEOMSNOF,推出S四边形BMONS四边形BEOF定值,证明RtOBERtOBF(HL),推出BM+BNBE+EM+BFFN2BE定值,推出欲求最小值,只要求出l的最小值,因为lBM+BN+ON+OM定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因为OMON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,由此即可解决问题(3)如图中,连接AD,作DEAB于E,DFAC于F证明PDFQDE(ASA),即可解决问题【详解】解:(1)如图1,作一边上的中线可分割成2个全等三角形,如图2,连接外心和各顶点的线段可分割成3个全等三角形,如图3,连接各
20、边的中点可分割成4个全等三角形,(2)如图中,作OEAB于E,OFBC于F,连接OBABC是等边三角形,O是外心,OB平分ABC,ABC60OEAB,OFBC,OEOF,OEBOFB90,EOF+EBF180,EOFNOM120,EOMFON,OEMOFN(ASA),EMFN,ONOM,SEOMSNOF,S四边形BMONS四边形BEOF定值,OBOB,OEOF,OEBOFB90,RtOBERtOBF(HL),BEBF,BM+BNBE+EM+BFFN2BE定值,欲求最小值,只要求出l的最小值,lBM+BN+ON+OM定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,OMON,根据垂线段最
21、短可知,当OM与OE重合时,OM定值最小,此时定值最小,s2,l2+2+4+,的最小值2+2 (3)如图中,连接AD,作DEAB于E,DFAC于FABC是等边三角形,BDDC,AD平分BAC,DEAB,DFAC,DEDF,DEADEQAFD90,EAF+EDF180,EAF60,EDFPDQ120,PDFQDE,PDFQDE(ASA),PFEQ,在RtDCF中,DC2,C60,DFC90,CFCD1,DF,同法可得:BE1,DEDF,AFACCF413,PAx,PFEQ3+x,BQEQBE2+x,SBDQBQDE(2+x)x+【点睛】本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判
22、定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。21、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km【解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作CHAB于点H,如图所示,BC=12km,B=30,km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DMAB于点M,如图所示,桥DC和AB平行,CH=6km,DM=CH=6km
23、,DMA=90,B=45,MH=EF=DC,AD=km,AM=DM=6km,现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)(AM+MH+BH)=AD+DC+BCAMMHBH=AD+BCAMBH=km,即现在从A地到达B地可比原来少走的路程是4.1km【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.22、(1)EFBD,见解析;(2)AE=AM,理由见解析;AEM能为等边三角形,理由见解析;(3)ANF的面积不变,理由见解析【解析】(1)依据DE=BF,DEBF,可得到四边形DBFE是平行四边形,进而得出EFDB;(2)依据已知条件判定ADEABM,即可得
24、到AE=AM;若AEM是等边三角形,则EAM=60,依据ADEABM,可得DAE=BAM=15,即可得到DE=16-8,即当DE=168时,AEM是等边三角形;(3)设DE=x,过点N作NPAB,反向延长PN交CD于点Q,则NQCD,依据DENBNA,即可得出PN=,根据SANF=AFPN=(x+8)=32,可得ANF的面积不变【详解】解:(1)EFBD证明:动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,DE=BF,又DEBF,四边形DBFE是平行四边形,EFDB;(2)AE=AMEFBD,F=ABD=45,MB=BF=DE,正方形ABCD,ADC=A
25、BC=90,AB=AD,ADEABM,AE=AM;AEM能为等边三角形若AEM是等边三角形,则EAM=60,ADEABM,DAE=BAM=15,tanDAE=,AD=8,2=,DE=168,即当DE=168时,AEM是等边三角形;(3)ANF的面积不变设DE=x,过点N作NPAB,反向延长PN交CD于点Q,则NQCD,CDAB,DENBNA,=,PN=,SANF=AFPN=(x+8)=32,即ANF的面积不变【点睛】本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似
26、三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论23、米.【解析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a0),则据题意得:,解得:,羽毛球飞行的路线所在的抛物线的表达式为:y=x2+x+1,y=(x4)2+,飞行的最高高度为:米【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.24、(1);(2);(3)【解析】(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)根据抛物
27、线的对称轴及即可得出点、的坐标,根据点的坐标,利用待定系数法即可求出抛物线的函数表达式;(3)利用配方法求出抛物线顶点的坐标,依照题意画出图形,观察图形可得出,再利用一次函数图象上点的坐标特征可得出,结合的取值范围即可得出的取值范围【详解】(1)抛物线的表达式为,抛物线的对称轴为直线故答案为:(2)抛物线的对称轴为直线,点的坐标为,点的坐标为将代入,得:,解得:,抛物线的函数表达式为(3),点的坐标为直线y=n与直线的交点的横坐标记为,且当时,总有,x2x30,直线与轴的交点在下方,直线:经过抛物线的顶点, 【点睛】本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)根据点的坐标,利用待定系数法求出二次函数表达式;(3)依照题意画出图形,利用数形结合找出