《【全国百强校首发】北京市一零一中学2023届中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《【全国百强校首发】北京市一零一中学2023届中考数学模拟预测题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )A3或6B1或6C1或3D4或62对于两组数据A,B,如果sA2sB2,且,则()A这两组数据的波动相同B数据B的波动小一些C它们的平均水平不相同D数据A的
2、波动小一些3一元一次不等式组的解集中,整数解的个数是( )A4 B5 C6 D74下列四个不等式组中,解集在数轴上表示如图所示的是()ABCD5如下字体的四个汉字中,是轴对称图形的是( )ABCD6化简:(a+)(1)的结果等于()Aa2Ba+2CD7把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则APG()A141B144C147D1508如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,O的半径为1,则APBP的最小值为A1BCD9已知y关于x的函数图象如图所示,则当y0时,自变量x的取值范围
3、是()Ax0B1x1或x2Cx1Dx1或1x210下列图案中,既是轴对称图形又是中心对称图形的是()ABCD11如图,在64的正方形网格中,ABC的顶点均为格点,则sinACB=()AB2CD12有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13计算a10a5=_14一元二次方程2x23x40根的判别式的值等于_15分解因式6xy29x2yy3 = _.16如图,在长方形ABCD中,AFBD,垂足为E,AF交BC于点F,连接DF图中有全等三角形_对,有面积相等但不全等的三角形_对17如图,ABCD中,M、N是BD的三等
4、分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:E为AB的中点;FC=4DF;SECF=;当CEBD时,DFN是等腰三角形其中一定正确的是_18计算:sin30(3)0=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)(1)计算: ; (2)解不等式组 :20(6分)如图,在ABC中,CAB90,CBA50,以AB为直径作O交BC于点D,点E在边AC上,且满足EDEA(1)求DOA的度数;(2)求证:直线ED与O相切21(6分)如图,反比例函数y=(x0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1(1)求k的值;
5、(1)点B为此反比例函数图象上一点,其纵坐标为2过点B作CBOA,交x轴于点C,求点C的坐标22(8分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标建筑面积7200平方米,为我国西北第一高阁秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的
6、像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米已知ABBM,EDBM,GFBM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度23(8分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0)点C、D分别在OB、AB边上,DCOA,CB=2(I)如图,将DCB沿射线CB方向平移,得到DCB当点C平移到OB的中点时,求点D的坐标;(II)如图,若边
7、DC与AB的交点为M,边DB与ABB的角平分线交于点N,当BB多大时,四边形MBND为菱形?并说明理由(III)若将DCB绕点B顺时针旋转,得到DCB,连接AD,边DC的中点为P,连接AP,当AP最大时,求点P的坐标及AD的值(直接写出结果即可)24(10分) (1)计算:3tan30+|2|+()1(3)0(1)2018.(2)先化简,再求值:(x),其中x=,y=1.25(10分)(1)计算:22+|4|+()-1+2tan60(2) 求 不 等 式 组的 解 集 26(12分)我们来定义一种新运算:对于任意实数 x、y,“”为 ab(a+1)(b+1)1.(1)计算(3)9(2)嘉琪研究
8、运算“”之后认为它满足交换律,你认为她的判断 ( 正确、错误)(3)请你帮助嘉琪完成她对运算“”是否满足结合律的证明 27(12分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题已知,ABC中,ABAC,BAC,点D、E在边BC上,且DAE(1)如图1,当60时,将AEC绕点A顺时针旋转60到AFB的位置,连接DF,求DAF的度数;求证:ADEADF;(2)如图2,当90时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当120,BD4,CE5时,请直接写出DE的长为 参考答案一、选择题(本大题共12个小题,每小题4分,共48分
9、在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】分析:分h2、2h5和h5三种情况考虑:当h2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2h5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论综上即可得出结论详解:如图,当h2时,有-(2-h)2=-1, 解得:h1=1,h2=3(舍去);当2h5时,y=-(x-h)2的最大值为0,不符合题意;当h5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=1综上所述:h的值为1或1故选B点睛:本题考查了二次函数的最值以
10、及二次函数的性质,分h2、2h5和h5三种情况求出h值是解题的关键2、B【解析】试题解析:方差越小,波动越小. 数据B的波动小一些.故选B.点睛:本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定3、C【解析】试题分析:解不等式得:,解不等式,得:x5,不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C考点:一元一次不等式组的整数解4、D【解析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案【详解】由解集在数轴上的表示可
11、知,该不等式组为,故选D【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键5、A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形故选A考点:轴对称图形6、B【解析】解:原式=故选B考点:分式的混合运算7、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得APG的度数【详解】(62)1806120,(52)1805108,APG(62)18012031082720360
12、216144,故选B【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n2)180 (n3)且n为整数)8、C【解析】作点A关于MN的对称点A,连接AB,交MN于点P,则PA+PB最小,连接OA,AA.点A与A关于MN对称,点A是半圆上的一个三等分点,AON=AON=60,PA=PA,点B是弧AN的中点,BON=30 ,AOB=AON+BON=90,又OA=OA=1,AB=PA+PB=PA+PB=AB=故选:C.9、B【解析】y0时,即x轴下方的部分,自变量x的取值范围分两个部分是1x2.故选B.10、B【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不
13、是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误故选B【点睛】考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合11、C【解析】如图,由图可知BD=2、CD=1、BC=,根据sinBCA=可得答案【详解】解:如图所示,BD=2、CD=1,BC=,则sinBCA=,故选C【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理12、C【解析】根据主视图的
14、定义判断即可【详解】解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确故选:【点睛】此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、a1【解析】试题分析:根据同底数幂的除法底数不变指数相减,可得答案原式=a10-1=a1,故答案为a1考点:同底数幂的除法14、41【解析】已知一元二次方程的根判别式为b24ac,代入计算即可求解.【详解】依题意,一元二次方程2x23x40,a2,b3,c4根的判别式为:b24ac(3)242(4)41故答案为:41【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax2+b
15、x+c0(a0)的根的判别式为b24ac是解决问题的关键.15、y(3xy)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy29x2yy3 =-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.16、1 1 【解析】根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,BAD=C=90,然后利用“边角边”证明RtABD和RtCDB全等;根据等底等高的
16、三角形面积相等解答【详解】有,RtABDRtCDB,理由:在长方形ABCD中,AB=CD,AD=BC,BAD=C=90,在RtABD和RtCDB中,RtABDRtCDB(SAS);有,BFD与BFA,ABD与AFD,ABE与DFE,AFD与BCD面积相等,但不全等故答案为:1;1【点睛】本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等17、【解析】由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,ABCD,推出BEMCDM,根据相似三角形的性质得到,于是得到BE=AB,故正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=A
17、B=CD,求得CF=3DF,故错误;根据已知条件得到SBEM=SEMN=SCBE,求得=,于是得到SECF=,故正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到ENB=EBN,等量代换得到CDN=DNF,求得DFN是等腰三角形,故正确【详解】解:M、N是BD的三等分点,DN=NM=BM,四边形ABCD是平行四边形,AB=CD,ABCD,BEMCDM,BE=CD,BE=AB,故正确;ABCD,DFNBEN,=,DF=BE,DF=AB=CD,CF=3DF,故错误;BM=MN,CM=2EM,BEM=SEMN=SCBE,BE=CD,CF=CD,=,SEFC=SCBE=SMNE,S
18、ECF=,故正确;BM=NM,EMBD,EB=EN,ENB=EBN,CDAB,ABN=CDB,DNF=BNE,CDN=DNF,DFN是等腰三角形,故正确;故答案为【点睛】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质18、- 【解析】sin30=,a0=1(a0)【详解】解:原式=-1=-故答案为:-.【点睛】本题考查了30的角的正弦值和非零数的零次幂.熟记是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)【解析】(1)根据幂的运算与实数的运算性质计算即可.(2)先整理为最简形式,再解每一个不等式,最后求其解集.
19、【详解】(1)解:原式= (2)解不等式,得 . 解不等式,得 . 原不等式组的解集为【点睛】本题考查了实数的混合运算和解一元一次不等式组,熟练掌握和运用相关运算性质是解答关键.20、(1)DOA =100;(2)证明见解析.【解析】试题分析:(1)根据CBA=50,利用圆周角定理即可求得DOA的度数;(2)连接OE,利用SSS证明EAOEDO,根据全等三角形的性质可得EDO=EAO=90,即可证明直线ED与O相切试题解析:(1)DBA=50,DOA=2DBA=100;(2)证明:连接OE,在EAO和EDO中,AO=DO,EA=ED,EO=EO,EAOEDO,得到EDO=EAO=90,直线ED
20、与O相切考点:圆周角定理;全等三角形的判定及性质;切线的判定定理21、(1)k=11;(1)C(2,0)【解析】试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=即可求出k的值;(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可试题解析:(1)点A在直线y=2x上,其横坐标为1y=21=6,A(1,6), 把点A(1,6)代入,得,解得:k=11;(1)由(1)得:,点B为此反比例函数图象上一点,其纵坐标为2,解得x=4,B(4,2),CBOA,设直线BC的
21、解析式为y=2x+b,把点B(4,2)代入y=2x+b,得24+b=2,解得:b=9,直线BC的解析式为y=2x9,当y=0时,2x9=0,解得:x=2,C(2,0)22、 “石鼓阁”的高AB的长度为56m【解析】根据题意得ABC=EDC=90,ABM=GFH=90,再根据反射定律可知:ACB=ECD,则ABCEDC,根据相似三角形的性质可得=,再根据AHB=GHF,可证ABHGFH,同理得=,代入数值计算即可得出结论.【详解】由题意可得:ABC=EDC=90,ABM=GFH=90,由反射定律可知:ACB=ECD,则ABCEDC,=,即=,AHB=GHF,ABHGFH,=,即=,联立,解得:A
22、B=56,答:“石鼓阁”的高AB的长度为56m【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.23、()D(3+,3);()当BB=时,四边形MBND是菱形,理由见解析;()P()【解析】()如图中,作DHBC于H首先求出点D坐标,再求出CC的长即可解决问题;()当BB=时,四边形MBND是菱形首先证明四边形MBND是平行四边形,再证明BB=BC即可解决问题;()在ABP中,由三角形三边关系得,APAB+BP,推出当点A,B,P三点共线时,AP最大.【详解】()如图中,作DHBC于H,AOB是等边三角形,DCOA,DCB=AOB=60,CDB=A=60,
23、CDB是等边三角形,CB=2,DHCB,CH=HB=,DH=3,D(6,3),CB=3,CC=23,DD=CC=23,D(3+,3)()当BB=时,四边形MBND是菱形,理由:如图中,ABC是等边三角形,ABO=60,ABB=180ABO=120,BN是ACC的角平分线,NBB=ABB=60=DCB,DCBN,ABBD四边形MBND是平行四边形,MEC=MCE=60,NCC=NCC=60,MCB和NBB是等边三角形,MC=CE,NC=CC,BC=2,四边形MBND是菱形,BN=BM,BB=BC=;()如图连接BP,在ABP中,由三角形三边关系得,APAB+BP,当点A,B,P三点共线时,AP最
24、大,如图中,在DBE中,由P为DE的中点,得APDE,PD=,CP=3,AP=6+3=9,在RtAPD中,由勾股定理得,AD=2此时P(,)【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大24、 (1)3;(2) xy,1【解析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】(1)3tan30+
25、|2-|+()-1-(3-)0-(-1)2018=3+2-+3-1-1,=+2+3-1-1,=3;(2)(x),=,=x-y,当x=,y=-1时,原式=+1=1【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法25、(1)1;(2)-1x1.【解析】试题分析:(1)、首先根据绝对值、幂、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解试题解析:解:(1)、(2)、 由得:x1,由得:x-1,不等式的解集:-1x126、(1)-21;(2)正确;(3)运算“”满足结合
26、律【解析】(1)根据新定义运算法则即可求出答案(2)只需根据整式的运算证明法则ab=ba即可判断(3)只需根据整式的运算法则证明(ab)c=a(bc)即可判断【详解】(1)(-3)9=(-3+1)(9+1)-1=-21(2)ab=(a+1)(b+1)-1ba=(b+1)(a+1)-1,ab=ba,故满足交换律,故她判断正确;(3)由已知把原式化简得ab=(a+1)(b+1)-1=ab+a+b(ab)c=(ab+a+b)c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+ca(bc)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c(ab)c
27、=a(bc)运算“”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型27、(1)30见解析(2)BD2+CE2DE2(3)【解析】(1)利用旋转的性质得出FAB=CAE,再用角的和即可得出结论;利用SAS判断出ADEADF,即可得出结论;(2)先判断出BF=CE,ABF=ACB,再判断出DBF=90,即可得出结论;(3)同(2)的方法判断出DBF=60,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论【详解】解:(1)由旋转得,FABCAE,BAD+CAEBACDAE603030,DAFBAD+BAFBAD+CAE30;由旋转知,
28、AFAE,BAFCAE,BAF+BADCAE+BADBACDAEDAE,在ADE和ADF中,ADEADF(SAS);(2)BD2+CE2DE2,理由:如图2,将AEC绕点A顺时针旋转90到AFB的位置,连接DF,BFCE,ABFACB,由(1)知,ADEADF,DEDF,ABAC,BAC90,ABCACB45,DBFABC+ABFABC+ACB90,根据勾股定理得,BD2+BF2DF2,即:BD2+CE2DE2;(3)如图3,将AEC绕点A顺时针旋转90到AFB的位置,连接DF,BFCE,ABFACB,由(1)知,ADEADF,DEDF,BFCE5,ABAC,BAC90,ABCACB30,DBFABC+ABFABC+ACB60,过点F作FMBC于M,在RtBMF中,BFM90DBF30,BF5,BD4,DMBDBM,根据勾股定理得, ,DEDF,故答案为【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键