2022-2023学年福建省福清市林厝中学十校联考最后数学试题含解析.doc

上传人:茅**** 文档编号:87068592 上传时间:2023-04-16 格式:DOC 页数:24 大小:866KB
返回 下载 相关 举报
2022-2023学年福建省福清市林厝中学十校联考最后数学试题含解析.doc_第1页
第1页 / 共24页
2022-2023学年福建省福清市林厝中学十校联考最后数学试题含解析.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2022-2023学年福建省福清市林厝中学十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省福清市林厝中学十校联考最后数学试题含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列事件中是必然事件的是()A早晨的太阳一定从东方升起B中秋节的晚上一定能看到月亮C打开电视机,正在播少儿节目D小红今年

2、14岁,她一定是初中学生2如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y=(x0)的图象经过菱形OABC中心E点,则k的值为()A6B8C10D123下列计算正确的是()Aa2a3a6B(a2)3a6Ca6a2a4Da5+a5a104若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()Am2Bm2Cm2Dm25如图,在菱形ABCD中,E是AC的中点,EFCB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A24B18C12D96如图,以两条直线l1,l2的交点坐标为解的方程组是( )ABCD7如图,正比例函数的图像与反比例函

3、数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )Ax-2或x2Bx-2或0x2C-2x0或0x2D-2x0或x28下面说法正确的个数有()如果三角形三个内角的比是123,那么这个三角形是直角三角形;如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;如果A=B=C,那么ABC是直角三角形;若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;在ABC中,若AB=C,则此三角形是直角三角形.A3个 B4个 C5个 D6个9潍坊市2018年政府工作报告中显示,潍坊

4、社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖其中,数字2000亿元用科学记数法表示为()元(精确到百亿位)A21011 B21012 C2.01011 D2.0101010二次函数y=ax2+bx+c(a0)的图象如图,则反比例函数y=与一次函数y=bxc在同一坐标系内的图象大致是( )ABCD11如图,PA和PB是O的切线,点A和B是切点,AC是O的直径,已知P40,则ACB的大小是( )A60B65C70D7512一个圆锥的侧面积是12,它的

5、底面半径是3,则它的母线长等于()A2 B3 C4 D6二、填空题:(本大题共6个小题,每小题4分,共24分)13圆锥的底面半径为6,母线长为10,则圆锥的侧面积为_cm214在ABC中,AB=AC,A=36,DE是AB的垂直平分线,DE交AB于点D,交AC于点E,连接BE下列结论BE平分ABC;AE=BE=BC;BEC周长等于AC+BC;E点是AC的中点其中正确的结论有_(填序号)15李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那

6、么可列出的方程是_.16要使分式有意义,则x的取值范围为_17已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是_(结果保留)18如图,将一幅三角板的直角顶点重合放置,其中A=30,CDE=45若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周当DCE一边与AB平行时,ECB的度数为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在平面直角坐标系xOy中,二次函数yax2+bx+c(a0)的图象经过A(0,4),B(2,0),C(-2,0)三点(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函

7、数的图象沿射线DA方向平移,使图象再次经过点B求平移后图象顶点E的坐标;直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积20(6分)已知:在ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.求证:四边形DECF是菱形.21(6分)如图,在平面直角坐标系中,抛物线yx2mxn经过点A(3,0)、B(0,3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t分别求出直线AB和这条抛物线的解析式若点P在第四象限,连接AM、BM,当线段PM最长时,求ABM的面积是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平

8、行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由22(8分)如图,在ABC中,D、E分别是边AB、AC上的点,DEBC,点F在线段DE上,过点F作FGAB、FHAC分别交BC于点G、H,如果BG:GH:HC2:4:1求的值23(8分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM判断四边形AEMF是什么特殊四边形?并证明你的结论24(10分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价检测小组随机

9、抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整)请根据统计图中的信息解答下列问题:本次抽查的样本容量是;在扇形统计图中,“主动质疑”对应的圆心角为度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?25(10分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。(1)求二次函数的表达式;(2)若一次函数y=kx+b(k0)的图象与二次函数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;(3)将二次函数y=x2+ax+2a+1的图象向

10、右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且mn,结合图象求x0的取值范围26(12分)如图,中,于,为边上一点(1)当时,直接写出,(2)如图1,当,时,连并延长交延长线于,求证:(3)如图2,连交于,当且时,求的值27(12分)已知,ABC中,A=68,以AB为直径的O与AC,BC的交点分别为D,E()如图,求CED的大小;()如图,当DE=BE时,求C的大小参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解【详解】解:B、

11、C、D选项为不确定事件,即随机事件故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起故选A【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件2、B【解析】根据勾股定理得到OA=5,根据菱形的性质得到AB=OA=5,ABx轴,求得B(-8,-4),得到E(-4,-2),于是得到结论【详解】点A的坐标为(3,4),OA=5,四边形AOCB是菱形,AB=OA=5,ABx轴,B(8,4),点E是菱形AOCB的中心,E(4,2),k=4(2)=8,故选B【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键3、B【解析】根据同底数

12、幂乘法、幂的乘方的运算性质计算后利用排除法求解【详解】A、a2a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选B【点睛】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错4、B【解析】根据反比例函数的性质,可得m+10,从而得出m的取值范围【详解】函数的图象在其象限内y的值随x值的增大而增大,m+10,解得m-1故选B5、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解【详解】E是AC中点,EFBC,交AB于点F,EF是ABC的中位线,B

13、C=2EF=23=6,菱形ABCD的周长是46=24,故选A【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.6、C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式然后联立两函数的解析式可得出所求的方程组【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:故选C【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的

14、图象上,在函数的图象上的点,就一定满足函数解析式函数图象交点坐标为两函数解析式组成的方程组的解7、D【解析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论【详解】解:反比例函数与正比例函数的图象均关于原点对称,A、B两点关于原点对称,点A的横坐标为1,点B的横坐标为-1,由函数图象可知,当-1x0或x1时函数y1=k1x的图象在的上方,当y1y1时,x的取值范围是-1x0或x1故选:D【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1y1时x的取值范围是解答此题的关键8、C【解析】试题分析:三角形三个内角的比是1:2:3,设三角形的三个内角分别

15、为x,2x,3x,x+2x+3x=180,解得x=30,3x=330=90,此三角形是直角三角形,故本小题正确;三角形的一个外角与它相邻的一个内角的和是180,若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;直角三角形的三条高的交点恰好是三角形的一个顶点,若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;A=B=C,设A=B=x,则C=2x,x+x+2x=180,解得x=45,2x=245=90,此三角形是直角三角形,故本小题正确;三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,三角形一个内角

16、也等于另外两个内角的和,这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,有一个内角一定是90,故这个三角形是直角三角形,故本小题正确;三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,有一个内角一定是90,故这个三角形是直角三角形,故本小题正确故选D考点:1.三角形内角和定理;2.三角形的外角性质9、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数

17、绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】2000亿元=2.01故选:C【点睛】考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、C【解析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论【详解】解:观察二次函数图象可知:开口向上,a1;对称轴大于1,1,b1;二次函数图象与y轴交点在y轴的正半轴,c1反比例函数中ka1,反比例函数图象在第二、四象限内;一次函数ybxc中,b1,c1,一次函数图象经过第二、三、四象限故选C【点睛】本题考查了二次函数的图

18、象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论11、C【解析】试题分析:连接OB,根据PA、PB为切线可得:OAP=OBP=90,根据四边形AOBP的内角和定理可得AOB=140,OC=OB,则C=OBC,根据AOB为OBC的外角可得:ACB=1402=70.考点:切线的性质、三角形外角的性质、圆的基本性质.12、C【解析】设母线长为R,底面半径是3cm,则底面周长=6,侧面积=3R=12,R=4cm故选C二、填空题

19、:(本大题共6个小题,每小题4分,共24分)13、60【解析】圆锥的侧面积=底面半径母线长,把相应数值代入即可求解解:圆锥的侧面积=610=60cm114、【解析】试题分析:根据三角形内角和定理求出ABC、C的度数,根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的判定定理和三角形的周长公式计算即可解:AB=AC,A=36,ABC=C=72,DE是AB的垂直平分线,EA=EB,EBA=A=36,EBC=36,EBA=EBC,BE平分ABC,正确;BEC=EBA+A=72,BEC=C,BE=BC,AE=BE=BC,正确;BEC周长=BC+CE+BE=BC+CE+EA=AC+BC,正确;BE

20、EC,AE=BE,AEEC,点E不是AC的中点,错误,故答案为考点:线段垂直平分线的性质;等腰三角形的判定与性质15、【解析】分析:根据题意把李明步行和骑车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可.详解:设他推车步行的时间为x分钟,根据题意可得:80x+250(15-x)=2900.故答案为80x+250(15-x)=2900.点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.16、x1【解析】由题意得x-10,x1.故答案为x1.17、8【解析】根据圆锥的侧面积=底面周长母线长2公式即可求出【详解】圆锥体的底面半径为2

21、,底面周长为2r=4,圆锥的侧面积=442=8故答案为:8【点睛】灵活运用圆的周长公式和扇形面积公式18、15、30、60、120、150、165【解析】分析:根据CDAB,CEAB和DEAB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况详解:、CDAB, ACD=A=30, ACD+ACE=DCE=90,ECB+ACE=ACB=90,ECB=ACD=30;CDAB时,BCD=B=60,ECB=BCD+EDC=60+90=150如图1,CEAB,ACE=A=30,ECB=ACB+ACE=90+30=120;CEAB时,ECB=B=60如图2,DE

22、AB时,延长CD交AB于F, 则BFC=D=45,在BCF中,BCF=180-B-BFC,=180-60-45=75,ECB=BCF+ECF=75+90=165或ECB=9075=15点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)yx2+4;(2)E(5,9);1.【解析】(1)待定系数法即可解题,(2)求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;AB扫过的面积是平行四边形ABGE,根据S四边形

23、ABGES矩形IOKHSAOBSAEISEHGSGBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)A(0,4),B(2,0),C(2,0)二次函数的图象的顶点为A(0,4),设二次函数表达式为yax2+4,将B(2,0)代入,得4a+40,解得,a1,二次函数表达式yx2+4;(2)设直线DA:ykx+b(k0),将A(0,4),D(4,0)代入,得 ,解得, ,直线DA:yx+4,由题意可知,平移后的抛物线的顶点E在直线DA上,设顶点E(m,m+4),平移后的抛物线表达式为y(xm)2+m+4,又平移后的抛物线过点B(2,0),

24、将其代入得,(2m)2+m+40,解得,m15,m20(不合题意,舍去),顶点E(5,9),如图,连接AB,过点B作BLAD交平移后的抛物线于点G,连结EG,四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GKx轴于点K,过点E作EIy轴于点I,直线EI,GK交于点H由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点GB(2,0),点G(7,5),GK5,OB2,OK7,BKOKOB725,A(0,4),E(5,9),AI945,EI5,EH752,HG954,S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK79245524

25、55638251答:图象A,B两点间的部分扫过的面积为1【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.20、见解析【解析】证明:D、E是AB、AC的中点DE=BC,EC=AC D、F是AB、BC的中点DF=AC,FC=BCDE=FC=BC,EC=DF=ACAC=BCDE=EC=FC=DF四边形DECF是菱形21、 (1)抛物线的解析式是.直线AB的解析式是.(2) .(3)P点的横坐标是或.【解析】(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,3)分别代入y=x2+mx+n与y=kx+b,得到关于

26、m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t3),则M(t,t22t3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t3)(t22t3)=t2+3t,然后根据二次函数的最值得到当t=时,PM最长为=,再利用三角形的面积公式利用SABM=SBPM+SAPM计算即可;(3)由PMOB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t22t3)(t3)=3;当P在第三象限:PM=OB=3,t23t=3,分别解一元二次方程即可得到满足

27、条件的t的值【详解】解:(1)把A(3,0)B(0,-3)代入,得解得所以抛物线的解析式是.设直线AB的解析式是,把A(3,0)B(0,)代入,得解得所以直线AB的解析式是.(2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时=.(3)若存在,则可能是:P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.P在第一象限平行四边形OBPM: PM=OB=3,解得,(舍去),所以P点的横坐标是.P在第三象限平行四边形OBPM:PM=OB=3,解得(舍去),所以P点的横坐标是.所以P点的横坐标是或.22、【解析】先根据平行线的性质证明ADEFG

28、H,再由线段DF=BG、FE=HC及BGGHHC=241,可求得的值.【详解】解:DEBC,ADE=B,FGAB,FGH=B,ADE=FGH,同理:AED=FHG,ADEFGH, ,DEBC ,FGAB,DF=BG,同理:FE=HC,BGGHHC=241,设BG=2k,GH=4k,HC=1k,DF=2k,FE=1k,DE=5k,.【点睛】本题考查了平行线的性质和三角形相似的判定和相似比.23、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解析】(1)求简单的线段相等,可证线段所在的三角形全等,即证ABEADF;(2)由于四边形ABCD是正方形,易得ECO=FCO=45,BC=CD

29、;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形【详解】(1)证明:四边形ABCD是正方形,AB=AD,B=D=90,在RtABE和RtADF中,RtADFRtABE(HL)BE=DF;(2)四边形AEMF是菱形,理由为:证明:四边形ABCD是正方形,BCA=DCA=45(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),BE=DF(已证),BC-BE=DC-DF(等式的性质),即CE=CF,在COE和COF中,COECOF(S

30、AS),OE=OF,又OM=OA,四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),AE=AF,平行四边形AEMF是菱形24、 (1)560;(2)54;(3)补图见解析;(4)18000人【解析】(1)本次调查的样本容量为22440%=560(人);(2)“主动质疑”所在的扇形的圆心角的度数是:36084560=54; (3)“讲解题目”的人数是:56084168224=84(人)(4)60000=18000(人),答:在课堂中能“独立思考”的学生约有18000人.25、 (1)y=x2-2x-3;(2)k=b;(3)x02或x01【解析】(1)将点M坐标代入y=x2+ax+

31、2a+1,求出a的值,进而可得到二次函数表达式;(2)先求出抛物线与x轴的交点,将交点代入一次函数解析式,即可得到k,b满足的关系;(3)先求出平移后的新抛物线的解析式,确定新抛物线的对称轴以及Q的对称点Q,根据mn结合图像即可得到x0的取值范围.【详解】(1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,因此,二次函数的表达式为:y=x2-2x-3;(2)y=x2-2x-3与x轴的交点是:(3,0),(-1,0)当y=kx+b(k0)经过(3,0)时,3k+b=0;当y=kx+b(k0)经过(-1,0)时,k=b(3)将二次函数y=x2-2x-3的

32、图象向右平移2个单位得到y=x2-6x+5,对称轴是直线x=3,因此Q(2,n)在图象上的对称点是(1,n),若点P(x0,m)使得mn,结合图象可以得出x02或x01【点睛】本题主要考查二次函数的图像和性质,熟练掌握这些知识点是解题的关键.26、(1),;(2)证明见解析;(3)【解析】(1)利用相似三角形的判定可得,列出比例式即可求出结论;(2)作交于,设,则,根据平行线分线段成比例定理列出比例式即可求出AH和EH,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作于,根据相似三角形的判定可得,列出比例式可得,设,即可求出x的值,根据平行线分线段成比例定理求出,设,然后根据勾股

33、定理求出AC,即可得出结论【详解】(1)如图1中,当时,故答案为:,(2)如图中,作交于,tanB=,tanACE= tanB=BE=2CE,设,则,(3)如图2中,作于,设,则有,解得或(舍弃),设,在中,【点睛】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键27、()68()56【解析】(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明CED=A即可,(2)连接AE,在RtAEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.【详解】()四边形ABED 圆内接四边形,A+DEB=180,CED+DEB=180,CED=A,A=68,CED=68()连接AEDE=BD,,DAE=EAB=CAB=34,AB是直径,AEB=90,AEC=90,C=90DAE=9034=56【点睛】本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 初中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁