《2022-2023学年甘肃省武威市第二十三中学中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年甘肃省武威市第二十三中学中考四模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知O及O外一点P,过点P作出O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:连接OP,作OP的垂直平分线l,交OP于点A;以点A为圆心、OA为半径画弧、交O于点M;作直线PM,则直线PM即为所求(如图1)
2、乙:让直角三角板的一条直角边始终经过点P;调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在O上,记这时直角顶点的位置为点M;作直线PM,则直线PM即为所求(如图2)对于两人的作业,下列说法正确的是( )A甲乙都对B甲乙都不对C甲对,乙不对D甲不对,已对2下列关于统计与概率的知识说法正确的是()A武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B检测100只灯泡的质量情况适宜采用抽样调查C了解北京市人均月收入的大致情况,适宜采用全面普查D甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数3实数a,b在数轴上的位置如图所示
3、,以下说法正确的是( )Aa+b=0BbaCab0D|b|a|4某市今年1月份某一天的最高气温是3,最低气温是4,那么这一天的最高气温比最低气温高A7B7C1D15如图是本地区一种产品30天的销售图象,图是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润日销售量一件产品的销售利润,下列结论错误的是()A第24天的销售量为200件B第10天销售一件产品的利润是15元C第12天与第30天这两天的日销售利润相等D第27天的日销售利润是875元6下列图形中一定是相似形的是( )A两个菱形B两个等边三角形C两个矩
4、形D两个直角三角形7如图,AB切O于点B,OA2,AB3,弦BCOA,则劣弧BC的弧长为()ABCD8要使分式有意义,则x的取值应满足( )Ax=2Bx2Cx2Dx29下列运算正确的是()A(a2)4=a6Ba2a3=a6CD10舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A4.9951011B49.951010C0.49951011D4.9951010二、填空题(共7小题,每小题3分,满分21分)11已知b是a,c的比例中项,若a=4,c=16,则b=_12如图,已知反比例函数y=(x0)的图象经过RtOAB斜边OB的中点C
5、,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则OAD的面积为_13如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_14如果=k(b+d+f0),且a+c+e=3(b+d+f),那么k=_15关于的一元二次方程有两个不相等的实数根,则实数的取值范围是_16如果,那么的结果是_.17如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为_三、解答题(共7小题,满分69分)18(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个
6、,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)假如你摸一次,你摸到白球的概率P(白球) ;试估算盒子里黑、白两种颜色的球各有多少只?19(5分)如图,已知ABC,按如下步骤作图:分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
7、连接MN,分别交AB、AC于点D、O;过C作CEAB交MN于点E,连接AE、CD(1)求证:四边形ADCE是菱形;(2)当ACB=90,BC=6,ADC的周长为18时,求四边形ADCE的面积20(8分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:两次取出的小球标号相同;两次取出的小球标号的和等于4.21(10分)如图1,直角梯形OABC中,BCOA,OA=6,BC=2,BAO=45 (1)OC的长为; (2)D是OA上一点,以BD为直径作M,M交AB于点Q当M与y轴相切时,sinBOQ=; (3)如图2
8、,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线BCO向点O运动当点P到达点A时,两点同时停止运动过点P作直线PEOC,与折线OBA交于点E设点P运动的时间为t(秒)求当以B、D、E为顶点的三角形是直角三角形时点E的坐标22(10分)已知反比例函数的图象过点A(3,2)(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0m3,过点M作直线MBx轴,交y轴于点B;过点A作直线ACy轴,交x轴于点C,交直线MB于点D当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由23(12分)已知,如图,是的
9、平分线,点在上,垂足分别是、.试说明:.24(14分)如图,已知ABC中,ACB90,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E(1)如果BC6,AC8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PDAB,且CE2,ED3,求cosA的值;(3)联结PD,如果BP22CD2,且CE2,ED3,求线段PD的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到O=AMO,AMP=MPA,所以OMA+AMP=O+MPA=90,得出MP是O的切线,(1)直角三角
10、板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,所以OMP=90,得到MP是O的切线【详解】证明:(1)如图1,连接OM,OA连接OP,作OP的垂直平分线l,交OP于点A,OA=AP以点A为圆心、OA为半径画弧、交O于点M;OA=MA=AP,O=AMO,AMP=MPA,OMA+AMP=O+MPA=90,OMMP,MP是O的切线;(1)如图1直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,OMP=90,MP是O的切线故两位同学的作法都正确故选A【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性2、B【解析】根据事件发生的可
11、能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B【点睛】本题考查随机事件及方差,解决
12、本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件方差越小波动越小3、D【解析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|a|【详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数
13、,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确. 选D.4、B【解析】求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可【详解】3-(-4)=3+4=7故选B5、C【解析】试题解析:A、根据图可得第24天的销售量为200件,故正确;B、设当0t20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,z=-x+2
14、5,当x=10时,y=-10+25=15,故正确;C、当0t24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,y=t+100,当t=12时,y=150,z=-12+25=13,第12天的日销售利润为;15013=1950(元),第30天的日销售利润为;1505=750(元),7501950,故C错误;D、第30天的日销售利润为;1505=750(元),故正确故选C6、B【解析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形【详解】解:等边三角形的对应角相等,对应边的比相等,两个等边三
15、角形一定是相似形,又直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B【点睛】本题考查了相似多边形的识别判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备7、A【解析】试题分析:连接OB,OC,AB为圆O的切线,ABO=90,在RtABO中,OA=,A=30,OB=,AOB=60,BCOA,OBC=AOB=60,又OB=OC,BOC为等边三角形,BOC=60,则劣弧长为故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算8、D【解析】试题分析:分式有意义,x+10,x1,即x的取
16、值应满足:x1故选D考点:分式有意义的条件9、C【解析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式= ,所以C选项正确;D、与不能合并,所以D选项错误故选:C【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.10、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n
17、是负数【详解】将499.5亿用科学记数法表示为:4.9951故选D【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题(共7小题,每小题3分,满分21分)11、8【解析】根据比例中项的定义即可求解.【详解】b是a,c的比例中项,若a=4,c=16,b2=ac=416=64,b=8,故答案为8【点睛】此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即ab=bc或,那么线段b叫做线段a、c的比例中项.12、【解析】由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5
18、),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到OAD的面积.【详解】点B的坐标为(2,3),点C为OB的中点,C点坐标为(1,1.5),k=11.5=1.5,即反比例函数解析式为y=,SOAD=1.5=故答案为:【点睛】本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于 .13、或10 【解析】试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图,当点E在DC上时,点D的对应
19、点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在RtEQF中,(4-x)2+22=x2,所以x=(2)如图,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在RtEQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.14、3【解析】=k,a=bk,c=dk,e=fk,a+c+e=bk+dk+fk=k(a+b+c),a+c+e=3(b+d+f),k=3,故答案为:3.15、b9【解析】由方程有两个不相等的实数根结
20、合根的判别式,可得出,解之即可得出实数b的取值范围【详解】解:方程有两个不相等的实数根,解得:【点睛】本题考查的知识点是根的判别式,解题关键是牢记“当时,方程有两个不相等的实数根”16、1【解析】令k,则a=2k,b=3k,代入到原式化简的结果计算即可【详解】令k,则a=2k,b=3k,原式=1故答案为:1【点睛】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分17、1【解析】根据题意,可以求得B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长【详解】在RtABC中,CM平分ACB交AB于点M,过点M
21、作MNBC交AC于点N,且MN平分AMC,AMN=NMC=B,NCM=BCM=NMC,ACB=2B,NM=NC,B=30,AN=1,MN=2,AC=AN+NC=3,BC=1,故答案为1【点睛】本题考查含30角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题(共7小题,满分69分)18、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】试题分析:通过题意和表格,可知摸到白球的概率都接近与0.6,因此摸到白球的概率估计值为0.6.19、(1)详见解析;(2)1【解析】(1)利用直线DE是线段A
22、C的垂直平分线,得出ACDE,即AOD=COE=90,从而得出AODCOE,即可得出四边形ADCE是菱形.(2)利用当ACB=90时,ODBC,即有ADOABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.【详解】(1)证明:由题意可知:分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;直线DE是线段AC的垂直平分线,ACDE,即AOD=COE=90;且AD=CD、AO=CO,又CEAB,1=2,在AOD和COE中 AODCOE(AAS),OD=OE,A0=CO,DO=EO,四边形ADCE是平行四边形,又ACDE,四边形A
23、DCE是菱形;(2)解:当ACB=90时,ODBC,即有ADOABC, 又BC=6,OD=3,又ADC的周长为18,AD+AO=9, 即AD=9AO, 可得AO=4,DE=6,AC=8, 【点睛】考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.20、(1)(2)【解析】试题分析:首先根据题意进行列表,然后求出各事件的概率试题解析:(1)P(两次取得小球的标号相同)=;(2)P(两次取得小球的标号的和等于4)=考点:概率的计算21、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OC
24、BH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MNOC设圆的半径为r,则MN=MB=MD=r在RtBHD中运用勾股定理可求出r=2,从而得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运
25、用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B作BHOA于H,如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形,OC=BH,BC=OH OA=6,BC=2,AH=0AOH=OABC=62=4 BHA=90,BAO=45,tanBAH=4,BH=HA=4,OC=BH=4 故答案为4 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN
26、=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=BH2+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重合,BD0A,BD=AD BD是M的直径,BGD=90,即DGAB,BG=AG GFOA,BDOA,GFBD,AFGADB,=,AF=AD=2,GF=BD=2,OF=4,OG=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtOR
27、B中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:t=4则OP=CD=DB=4 DEOC,BDEBCO,=,DE=2,EP=2,点E的坐标为(4,2) 当BED=90时,如图4 DBE=OBC,DEB=BCO=90,DBEOBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEBCO,=,OE=t OE+BE=OB=2t+t=2 解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=
28、6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2 PEOD,OD=PE,DOP=90,四边形ODEP是矩形,DE=OP=t,DEOP,BED=BAO=45 在RtDBE中,cosBED=,DE=BE,t=t2)=2t4 解得:t=4,OP=4,PE=64=2,点E的坐标为(4,2) 综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2) 点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性22、(1);(2
29、)MB=MD【解析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)有SOMB=SOAC=3,可得矩形OBDC的面积为12;即OCOB=12;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.【详解】(1)将A(3,2)代入中,得2,k=6,反比例函数的表达式为(2)BM=DM,理由:SOMB=SOAC=3,S矩形OBDC=S四边形OADM+SOMB+SOAC=3+3+6=12,即OCOB=12,OC=3,OB=4,即n=4, MB=,MD=,MB=MD【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数
30、比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.23、见详解【解析】根据角平分线的定义可得ABD=CBD,然后利用“边角边”证明ABD和CBD全等,根据全等三角形对应角相等可得ADB=CDB,然后根据角平分线上的点到角的两边的距离相等证明即可【详解】证明:BD为ABC的平分线,ABD=CBD,在ABD和CBD中, ABDCBD(SAS),ADB=CDB,点P在BD上,PMAD,PNCD,PM=PN【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到ADB=CDB是解题的
31、关键24、(1)(2)(3) .【解析】(1)由勾股定理求出BP的长, D是边AB的中点,P为AC的中点,所以点E是ABC的重心,然后求得BE的长.(2)过点B作BFCA交CD的延长线于点F,所以,然后可求得EF=8,所以,所以,因为PDAB,D是边AB的中点,在ABC中可求得cosA的值.(3)由,PBD=ABP,证得PBDABP,再证明DPEDCP得到,PD可求.【详解】解:(1)P为AC的中点,AC=8,CP=4,ACB=90,BC=6,BP=,D是边AB的中点,P为AC的中点,点E是ABC的重心,(2)过点B作BFCA交CD的延长线于点F,BD=DA,FD=DC,BF=AC,CE=2,ED=3,则CD=5,EF=8,,设CP=k,则PA=3k,PDAB,D是边AB的中点,PA=PB=3k,,,(3)ACB=90,D是边AB的中点,,,,PBD=ABP,PBDABP,BPD=A,A=DCA,DPE=DCP,PDE=CDP,DPEDCP,,DE=3,DC=5,.【点睛】本题是一道三角形的综合性题目,熟练掌握三角形的重心,三角形相似的判定和性质以及三角函数是解题的关键.