第3章需求预测和决策.pptx

上传人:修**** 文档编号:87041268 上传时间:2023-04-15 格式:PPTX 页数:44 大小:463.49KB
返回 下载 相关 举报
第3章需求预测和决策.pptx_第1页
第1页 / 共44页
第3章需求预测和决策.pptx_第2页
第2页 / 共44页
点击查看更多>>
资源描述

《第3章需求预测和决策.pptx》由会员分享,可在线阅读,更多相关《第3章需求预测和决策.pptx(44页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Demand Requirements Demand Requirements And DecisionAnd Decision机械工程学院机械工程学院 工业工程系工业工程系需求预测和决策需求预测和决策主要内容主要内容 1 需求预测概论 2 预测中的定性方法 3 预测中的定量方法 4 预测方法的选择 5 生产管理决策主要内容主要内容预测的重要性预测的重要性 企业编制长期计划的基础 为预算和成本控制提供依据 为开发新产品提供信息 为补充销售人员提供依据 是作出关键决策的基础 用于编制生产作业计划需求的构成需求的构成典型的趋势需求典型的趋势需求有四种典型的趋势需求:(1 1)线性趋势)线性趋势反映

2、了因果关系反映了因果关系(或时间)的需求或时间)的需求典型的趋势需求典型的趋势需求有四种典型的趋势需求:(2 2)S S型趋势型趋势产品成长并到达成熟时期的需求产品成长并到达成熟时期的需求典型的趋势需求典型的趋势需求有四种典型的趋势需求:(3 3)渐进趋势)渐进趋势以优质产品大量投放市场时出现以优质产品大量投放市场时出现典型的趋势需求典型的趋势需求有四种典型的趋势需求:(4 4)指数增长)指数增长产品销售势头特好的产品产品销售势头特好的产品 定性预测 定量预测 仿真预测预测的分类预测的分类 长期预测(数年至数十年)中期预测(一年至数年)短期预测(数日至一年)预测种类:按性质分按时间分(1)一般

3、预测(2)市场调研(3)小组共识法(4)历史类比(5)德尔菲法预测中的定性方法预测中的定性方法(1 1)一般预测)一般预测 基本观点:预测是基于来自低层经验的逐步累加。假设前提:处于最低层的销售人员,那些离顾客最近的、最了解产品最终用途的人,最清楚产品未来的 的需求。做法:由他们收集情报,然后逐级上报的做法。预测中的定性方法预测中的定性方法(2 2)市场调研)市场调研 通常是聘请第三方专业市场调研公司进行预测。市场调研主要用于新产品研发,了解对现有产品的评价 了解顾客对现有产品的好恶,了解特定层次的顾客偏好 以确定哪些商品具有竞争性。数据收集方法有问卷调查和上门访谈两种。(3 3)小组共识)小

4、组共识由不同层次的人员在会上自由讨论。这种方法缺点在于 低层人员往往易受当前市场营销的左右,不敢与领导相 背。对于重要决策,如引进流水线等,由高层人员讨论。预测中的定性方法预测中的定性方法(4 4)历史类比)历史类比 预测某些新产品的需求时,如果有同类型产品可 用来作为类比模型,那是最理想的情况。类比法可用于很多产品类型互补产品,替代产品等 竞争性产品等。预测中的定性方法预测中的定性方法()()德尔菲法德尔菲法RandRand公司首创于公司首创于5050年代末,步骤如下:年代末,步骤如下:选择具有代表性的专家(不同背景的人)为调查对象;通过问卷(或E-mail),向专家处了解信息;汇总专家结果

5、,修改问卷,再度发给专家;再次汇总,提炼预测结果和条件,再度发给所有专家;归纳专家意见,形成需求报告;如有必要,再重复;(1)简单移动平均(2)加权移动平均法(3)指数平滑法(4)线性回归分析(5)因果回归模型(6)时间序列分解时间序列分析时间序列分析(1 1)简单移动平均简单移动平均 简单移动平均简单移动平均适用场合:产品需求为突发增长或下降,且不存在季节性因素时。移动平均法能有效消除预测中的随机波动。选择移动平均的最佳区间很重要。其主要缺点是在于每一因素都必须以数据表示。简单移动平均的计算公式为:简单移动平均的计算公式为:对下一期的预测值;移动平均的时期个数;前期、前两期、前三期直至前n期

6、的实际值简单移动平均简单移动平均简单移动平均算例简单移动平均算例周次 需求 3周 9周12345678910111213141580014001000150015001300180017001300170017001500230023002000106713001333143315331600160015671567163318332033136714671500155616441733简单移动平均的各元素权重都相等,而加权移动平均的权重值可以不同。当然,其权重之和必须等于1。权重的选择:经验法和试算法是选择权重的最简单的方法。一般而言,最近期的数据最能预示未来的情况,因而其权重应大些。但是,

7、其需求是季节性的,故权重也应是季节性的,一般对季节性产品季节权重系数要大。由于加权移动平均能区别对待历史数据,因而在这方面要优于简单移动平均。加权移动平均加权移动平均(2 2)加权移动平均法)加权移动平均法加权移动平均加权移动平均加权移动平均法公式及算例加权移动平均法公式及算例计算公式第t-1,t-2,t-3期实际销售额的权重计算实例一家百货店发现在某4个月的期间内,其最佳预测结果由当月实际销售额的40%,倒数第2个月销售额的30%,倒数第3个月的20%和倒数第4个月的10%,其四个月的销售额分别为100,90,105,95。第五个月的预测值为指数平滑法指数平滑法(3 3)指数平滑法)指数平滑

8、法前两种预测方法(简单移动平均和加权移动平均)中,主要点在于根据大量连续的历史数据预测未来,即随着模型中新数据的增添及过期数据的剔除,新的预测结果就可以预测出来。有的情况下,最近期的情况远比较早期的更能预测未来。如果越远的数据其重要性就越低,则指数平滑法就是逻辑性最强且最为简单的方法。第t期和第t-1期的指数平滑预测值;第t-1期的实际需求;平滑常数。单一指数平滑的公式为:指数平滑法指数平滑法之所以称之为指数平滑是因为每靠后一期其权重就降低 1-。例如,设=0.05,则各个时期的权重如下所示最近期的权重=(1-)0 0.0500最近期的权重=(1-)1 0.0475最近期的权重=(1-)2 0

9、.0451最近期的权重=(1-)3 0.0429权重因子指数平滑法指数平滑法指数平滑法算例:指数平滑法算例:假设所研究的产品的长期需求相对稳定,平滑常数=0.05也较合适,并假设上个月的预测值()为1050个单位,如果实际需求为1000而不是1050,那么本月的预测值为:由于平滑自相关很小,所以新预测值对误差为50单位的响应仅使得下月的预测值减少了2.5个单位。时期 某期实际需求某期预测需求 时期总数预测误差预测误差误差测量误差测量用来描述误差程度的常用术语有标准差、均方差(或方差)和平均绝对偏差平均绝对偏差(MAD)简单明了并且可以获得跟踪信号,故再度受宠。MAD是预测误差的平均值,用绝对值

10、表示。与标准偏差一样,MAD的优点还在于它度量了观测值与期望值的离差。在不考虑符号的情况下,MAD由实际需求和预测需求间的差异计算而得。它等于用绝对偏差总和除以数据点个数,以等式形式给出为:线性回归分析法线性回归分析法q 定义:两个或两个以上相关变量之间的函数关系。线性关系是指变量呈严格直线关系的一种特殊回归形式。q 优点:对主要事件或综合计划的长期预测很有用q 用处:时间序列预测和因果预测中都用线性回归。q 例子:手拟回归直线、最小二乘分析和模型分解。(4 4)线性回归分析法)线性回归分析法q 局限性:假设历史数据和未来预测值都在一条直线上。手拟趋势线手拟趋势线 例:某公司某产品过去3年12

11、季度的销售量如下表所示,该企业希望预测第4季度的销售情况:线性回归分析法线性回归分析法手拟趋势线手拟趋势线季度季度 销售量销售量季度季度 销售量销售量 1 600 2 1550 3 1550 4 1500 5 2400 6 3100 7 2600 8 2900 9 3800 10 4500 11 4000 12 4900 y=a+bx a=400 b=(4950-750)/(12-1)=382 y=400+382x线性回归分析法线性回归分析法手拟趋势线手拟趋势线解:首先建立坐标系统,取横坐标为季度,众坐标为销售额,则将过去12个季度的销售额对应的数据点在坐标系统中画出,相应散点图,如图所示,这

12、就是回归直线,下一步是确定截距a和斜率b。设 为实测值,y 为公式值,则 为误差,令 根据最小二乘法,则:最小二乘法最小二乘法 最小二乘法最小二乘法基本思想是试图使各数据点与回归直线上的相应点间的垂直距离平方和最小手拟趋势线是根据图中确定截距a和斜率b,而最小二乘法求解的公式为:得:令:最小二乘法最小二乘法根据最小二乘回归的思想,可以计算出上例中a和b的值,最终得b=359.6,a=441.6,这表明x每变化1单位,y改变359.6单位。严格按上述方程计算,可以可以推广到后一年的四个季度,下面的结果分别对应第1,2,3,4季度:最小二乘法最小二乘法因果预测因果预测年份 新房屋(x平方码)地毯销

13、量(y平方码)1989 18130001990 15 12000 1991 12 110001992 10 100001993 20 140001994 28 160001995 35 190001996 30 170001997 20 13000因果预测因果预测方程:y=7000+350 x设1998年新建房为25,则 y=7000+350 25=15750码多元回归:多元回归:考虑多个变量,以及它们各自对问题的影响。家具行业里:新结婚数、新建房屋数、可支的收入、趋势有关系,则 S=B+Bm(M)+Bh(H)+Bi(I)+Bt(T)式中:S每年总销售量;B基本销售额;M年中结婚数;H年中新造

14、房屋数;I可供自由支配的收入;T趋势多元回归多元回归预测方法的选择预测方法的选择预测可以做的事:预测可以做的事:(1)新产品市场销售 (2)库存量 (3)人力资源 (4)预算 基本的就是市场销售量。时间序列:时间序列:(1)简单移动 (2)加权移动 (3)指数平滑 线性回归趋势项 因果关系一定要弄清楚确实的因果关系。HerbigHerbig曾做过问卷调查,曾做过问卷调查,10001000万到万到5 5亿美元的企业亿美元的企业 预测方法举例预测方法举例 用到的用到的 重要性重要性 使用情况排列使用情况排列 高层管理讨论高层管理讨论 86 6 86 6 2.9 2.9 销售人员销售人员 68 68

15、 5 5 2.22.2 顾客调查顾客调查 72 72 4.7 4.7 2.22.2 时间序列时间序列 45 45 4.3 4.3 1.51.5 加权平均加权平均 46 46 3.8 3.8 1.41.4 指数平滑指数平滑 36 36 2.8 2.8 0.9 0.9 线性回归线性回归 38 38 4.0 4.0 1.31.3 多元回归多元回归 35 35 3.6 3.6 1.01.0预测方法的选择预测方法的选择一.产品决策一切机构存在基础:提供产品或服务。一切机构存在基础:提供产品或服务。最终维持:最终维持:选择,确定和设计产品。选择,确定和设计产品。新产品的开发和选择,受下列因素影响:新产品的

16、开发和选择,受下列因素影响:(1)经济的改变;(2)家庭规模缩小;(3)工艺的改变;(4)政策,法律的改变;(5)其它变化;影响产品变化的因素影响产品变化的因素二.产品生命周期 产品生命周期产品生命周期三.新产品开发的要求:(1)快速响应市场 (2)降低产品的复杂性;(3)增加零部件标准化程度;(4)改善产品的功能;(5)提高产品使用舒适性,安全性,可靠性 (6)质量鲁棒性(robust)减少制造变异对性能影响。新产品开发的要求新产品开发的要求管理过程是决策过程决策方法:多目标优化 决策树多层决策 简单决策单层决策决策类型:不确定决策 风险决策概率决策决策类型和方法决策类型和方法不确定决策 对

17、未来情况难以预测,发生的概率也不清楚对未来情况难以预测,发生的概率也不清楚 一一般有三种决策方法:般有三种决策方法:(1)悲观决策准则 从最不利中求较好的Maximin (2)乐观决策准则 从最好中求较好的Maximax (3)平均输出准则 从最好和最坏之差选择最大者不确定决策不确定决策选择自然态平均输出市场好市场不好大车间200,000-180,00020,000小车间100,000-20,00080,000乐观(大车间)悲观(小车间)平均(小车间)不确定决策例不确定决策例例:某公司想生产一种储货架,做了预算:建大车间:市场好(全部货出)赢利200,000元 市场不好(卖不出)亏损180,0

18、000元 建小车间:市场好(全部货出)赢利100,000元 市场不好(卖不出)亏损20,000元风险决策多种自然态出现,每种具有某种概率计算出期望赢利:多种自然态出现,每种具有某种概率计算出期望赢利:例:例:上例假设各种自然态出现的概率均为0.5,对三种选择的EMV计算如下:EMV(1)=200,0000.5+(-180,000)0.5=10,000元 EMV(2)=100,0000.5+(-20,000)0.5=40,000元 EMV(3)=0 (不建厂)按EMV值为最大取:建小厂风险决策风险决策决策树 存在两个以上的顺序决策时,决策树是个好办法。决策树是存在两个以上的顺序决策时,决策树是个

19、好办法。决策树是一种形象化的图示,决策因素还要计算。而前面讲的一种形象化的图示,决策因素还要计算。而前面讲的EMVEMV是是一种较好的评判因素。步骤如下:一种较好的评判因素。步骤如下:(1)定义问题;(2)画决策树;(3)决定每一种自然态出现的概率;(4)估算每一自然态和选择的联合的赢利;(5)计算EMV,解出。决策树决策树12建大厂建大厂建小厂建小厂不建厂不建厂状态点状态点市场好市场好 0.5市场不好市场不好 0.5市场好市场好 0.5市场不好市场不好 0.5决策点决策点200,000元元-180,000元元100,000元元-20,000元元赢利赢利EMV(1)=200,0000.5+(-

20、180,000)0.5=10,000元元 EMV(2)=100,0000.5+(-20,000)0.5=40,000元元0元元简单决策树分析简单决策树分析更复杂的模型(多层决策)上例没有做过市场调查和分析(假定上例没有做过市场调查和分析(假定0.5概率)要做概率)要做市场调查需要费用。好情报的期望值为:市场调查需要费用。好情报的期望值为:EVPI=确定期望值确定期望值 EMV的最大值的最大值 见下例:见下例:图中的概率是条件概率。例在市场调查(花10,000美元)中,在好市场前境中仍有22属不好市场。在不好市场中仍有27属好市场。多层决策多层决策市场好(市场好(0.78)市场好(市场好(0.2

21、2)市场好(市场好(0.78)市场好(市场好(0.22)市场好(市场好(0.27)市场不好(市场不好(0.73)市场好(市场好(0.27)市场不好市场不好(0.73)市场好(市场好(0.50)市场不好(市场不好(0.50)市场好(市场好(0.50)市场不好(市场不好(0.50)不办不办不办不办不办不办 大厂大厂小厂小厂 大厂大厂 大厂大厂小厂小厂小厂小厂123456740,0002400106400第一决策点第一决策点第二决策点第二决策点190,000190,00090,000-30,000190,000-190,00090,000-30,000200,000180,000100,000-20,00047800调查调查不做市场不做市场 调查调查调查结调查结果好果好不好不好

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 企业管理

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁