《地质灾害指数类保险定价模型研究.docx》由会员分享,可在线阅读,更多相关《地质灾害指数类保险定价模型研究.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、地质灾害指数类保险定价模型研究一、研究背景地质灾害,以滑坡为例,主要是指山体斜坡上一部分岩体在重力作用下沿着一定有利于滑动的软弱面,整体或分散地向下滑移的自然现象。我国的西南部地区是全球地质灾害最高发的地区之一。这是由于一方面,该地区地处世界两大地震带之一的地中海喜马拉雅地震带附近,不同规模的地壳运动加剧了地表的崎岖程度,地势起伏大,十分符合滑坡和泥石流等地质灾害发生的地形地貌条件。另一方面,当地气候又属亚热带季风气候,年降水量大,流水的溶蚀作用明显,尤其是每年的夏季,西南季风和东南季风带来的海洋水汽导致丰富的集中降水。基于全球地质灾害数据库中的数据显示,强降雨是触发该地区大部分地质灾害的主要
2、诱因之一。随着我国西部地区的发展,交通网络的不断完善,经济总量的不断攀升,多发的地质灾害对人民生命财产的威胁愈来愈不容忽视。2022年6月4日,贵阳北至广州南的D2809次旅客列车在进站前的月寨隧道口,撞上侵入线路的突发泥石流,导致7号、8号车发生脱线,造成1名司机、1名列车员与7名旅客受伤。此类灾害不仅造成巨大的经济损失,同时也经常伴随着人身伤亡。因此,针对地质灾害的防御救治工作尤为重要。由于此类防御救治工作工程量大,牵涉部门众多,应尽量发挥政府的统筹协调作用,制定合理的事前防治以及事后应急机制,确保防治工程的全面有效性和可实施性。在事前防治方面,主要体现为工程防治和行政防治两个维度。从工程
3、防治出发,一是可以通过生物措施,利用种草育林来改善土地植被的覆盖情况;二是可以通过修建工程,并减少不合理的开采开挖,以稳固山体。从行政防治出发,政府需要及时排查此类灾害的隐患点,合理预估相应的人员伤亡及经济损失影响,进而采取防治举措或及时搬迁隐患点居民。而在灾害发生后,政府需要在第一时间组织力量抢险救灾,之后开展广泛的灾后重建工作,包括重建公路桥梁等基础设施、补贴居民维修加固或重建住房等。以上资金需求会对当地政府的财政预算产生压力。合理运用保险类金融产品,发挥其资金放大作用(即在灾害发生后获得较高的保险赔付)能有效地对风险进行转移,确保政府在第一时间获得充足的资金用于应急响应及灾后重建工作。因
4、此,针对地质灾害高发区设计具有针对性的保险保障方案是十分必要的。2018年12月,四川省阿坝藏族羌族自治州茂县人民政府落地了全国首例针对地质灾害的巨灾指数保险项目。该项目创新性地采用指数保险的方式进行承保。与补偿型保险相比,指数类保险的理赔过程更便捷,能够极大地提升赔款的给付效率、提高应急救灾重建工作的时效性。指数类保险中的“指数”指的是灾害强度的表征指标,如地震震级、台风风速、降雨雨量等。其赔偿不是基于被保险人的实际损失,而是基于预先定义的灾害强度,即指数,是否达到触发水平,以此来决定赔付额度。茂县的指数产品开创性地选取了滑坡体积作为衡量地质灾害强度的指数。考虑到测量滑坡体积可能带来的不确定
5、性,该指数保险产品采用了区间赔付的方式,在每一赔付层中定义了滑坡体积上下限,构成一个区间。我们根据灾害事件发生后所测量的滑坡体积落入的区间确定该事件的赔付金额。另外,为符合可保利益原则,此类指数产品的设计也充分考虑到地质灾害发生与其影响程度的相关性,将经济损失作为第二触发指标。茂县在地质灾害巨灾保险领域为其他县市树立了榜样。四川省一直是我国地质灾害第一大省,面临着严峻的地质灾害防治形势。该项目的实施,让四川在利用金融工具完善灾后救治体系中积累了有效的经验,同时,也为四川省所在的西南地区,乃至全国类似地质条件的区域,提供了极具借鉴价值的参考。二、指数保险产品定价难点上述地质灾害指数保险产品的定价
6、是十分具有挑战性的,因为其所保障的灾害无论发生还是影响都包含着巨大的不确定性。目前的定价方法主要依赖汇总级别及事件级别的历史数据。汇总数据的一个重要来源是国家统计局所发布的统计年鉴,其中报告了按省份、年份以及风险类型(滑坡、泥石流、崩塌等)划分的地质灾害总数,以及由此产生的伤亡人数和直接经济损失。此外,省级统计局会在特定年份发布更为详细的地质灾害年报,基于灾害的类型进行更为细分的统计,不仅考虑到地区、年份和风险类型,还考虑到比如险情等级、月份等信息。与此同时,事件级的数据可从自然资源部网站发布的地质灾害险情报告中获得。该险情报告自2019年起至2022年,每日更新。我们可以根据这些报告了解相应
7、地质灾害事件的风险类型、位置和严重程度等信息。但是,上述历史数据仍不能充分满足我们的定价计算需求,主要由于以下两个原因:一是在公开的数据中,通常使用“地质灾害防治条例”中所定义的险情等级来衡量灾害严重程度,而缺少定价所需的过流面积、滑坡体积等其他指标。在历史数据中,根据“地质灾害防治条例”中的定义来划分险情等级,与我们在指数保险产品中使用的指数定义,比如滑坡体积(或过流面积),并不一致。险情等级主要依照地质灾害所引发的人员伤亡、经济损失分为四个等级。例如,因灾死亡30人以上或者直接经济损失1000万元以上的事件险情等级为特大型;因灾死亡10人以上30人以下或者直接经济损失500万元以上1000
8、万元以下的事件险情等级为大型,以此类推。当我们在指数产品中选择滑坡体积或过流面积作为参数时,险情等级在定价中的作用则受限于它们之间的弱相关性。例如,2021年8月30日22时,受连日强降雨影响,重庆市万州区钟鼓楼街道桑树村石鼓梁山北侧山脊孤石突发高位崩塌,滑坡体积约100立方米,造成5人死亡,按照险情等级的定义,此事件为中型事件。可以看到,该事件虽然滑坡体积不大,但由于地质灾害自身的巨大不确定性造成了极大的损失。因此,我们很难依靠历史数据中的险情等级来推测地质灾害相应的体积(或面积)。诚然,险情等级从灾害对人民生命财产影响的维度标准化区分灾害严重程度,在灾前防治、灾后救援中起着重要的指导作用,
9、但险情等级划分在指导指数保险产品定价及模型开发中的作用却十分有限。二是历史数据年限较短,且无法直接反映气候变化等趋势,导致定价结果不准确或存在偏差。我们所拥有的各种历史数据记录的年限较短。较细颗粒度的数据记录则年限更短,一般小于5年。正如前文所提到的,事件级别的历史数据仅公布了2019年以后的事件。为了精准定价指数保险产品,我们希望了解在预定义的地理范围内发生的地质灾害的频率及其发生之后的平均严重程度。如果数据年限短,则基于历史数据来估算频率和严重性可能:由于样本量小,所得到的估算值并未达到收敛而因此不准确;或因为大量可能尚未触发,或在记录起始以前发生的地质灾害未纳入我们的考虑范围,所得到的估
10、算值是有偏差的。此外,气候变化以及地质环境的变化都会直接影响地质灾害的风险等级,进而影响地质灾害指数产品的定价结果。举例来说,越来越频发的极端降雨会导致地质灾害发生频率及严重程度的上升,而这些变化在历史数据中无法体现。以上两点是我们面临的主要数据问题,致使我们无法使用传统的基于历史数据的定价方法。此外,其他的数据问题还包括:一是历史数据可能存在缺失值;二是不同历史数据的空间分辨率可能不一致(比如一些数据为省级数据,而另一些数据则基于区县级别);三是历史数据主要是根据现场调查收集的,人为因素对于数据质量的影响亦需考虑等。三、地质灾害保险定价模型解决方案为了解决上述定价问题,我们开发了针对地质灾害
11、指数保险产品的定价模型。与针对其他灾害风险的定价模型类似,该模型基于灾害发生频率以及严重程度两部分进行构建。其中,频率是通过预定义的地理范围(例如县、市等)内年均发生地质灾害的次数来衡量的。我们可以根据公开发布的历史事件数量加上考虑气候变化等因素的趋势分析来得到地质灾害频率。在我国省级尺度下,西南、中南地区发生一定规模以上地质灾害的频率较高。此外,灾害的严重程度则是由可能发生的灾害事件的平均影响程度进行表征。由于我们设计的指数产品使用滑坡体积(或过流面积)作为衡量灾害影响程度的标准,因此需要基于地理范围内所有可能发生的地质灾害事件计算其平均体积(或面积)。首先需要在给定的地理范围内识别风险点,
12、即地质灾害可能触发的潜在位置,形成一个集合。前文提到我国西南部的地质灾害主要由降雨导致,因此我们侧重识别以降雨为主要触发因子的潜在位置。每一个集合中的位置对应一次事件,可计算得到相应的滑坡体积(或面积),我们将基于该集合的平均体积(或面积)作为该地区灾害严重程度的近似。可以看出上述方法中有两个重要部分,即地质灾害潜在危险位置的识别以及每个位置的体积(或面积)的计算。前者可以通过生成代表边坡稳定性的安全系数地图来判别,而对于后者我们使用仿真边坡滑移的准物理模型进行评估。接下来,我们将着重介绍上述两种模型。第一种使用地质相关数据,搭建安全系数模型,识别不同降雨情景下的地质灾害风险点。安全系数(FO
13、S),作为衡量边坡稳定性的量度,可定义为边坡滑移净阻力与净驱动力 的比值。若FOS的值小于 1,则认为边坡不稳定,为风险点,易发生地质灾害,反之亦然。在针对安全系数的计算方法中,应用比较广泛的有针对整体的极限平衡法以及有限元强度折减法。其中,极限平衡法又包括直线破裂面法(假设断面近似斜面)、圆弧条法(假设断面近似为圆弧状)和毕肖普法等。此外,针对坡体几何条件变化比较复杂的情况,重力比例自动加载法的表现则更为优越。基于对各类分析方法的评估以及数据的可获得性上的考量,我们最终选取了无限边坡模型(infinite slope model)作为本模型中用于评估 FOS 的准物理模型。基于模型假设,滑坡
14、为可以在无限斜面上滑动的均匀体如图1所示。作用在均匀体上的净驱动力主要来自边坡自身的重力,而净阻力主要源自摩擦阻力,由重力、孔隙水压力和边坡的岩层特性(如岩石凝聚力)决定。其中,孔隙水压力受地下水位与滑动面深度的比值影响,可以根据水文模型进一步确定。在不同的降雨情景下,FOS随着地下水位的变化发生波动,进而对风险点的识别产生影响。在由无限边坡模型生成的FOS图中,FOS大于1,即不易引发地质灾害的区域,一般位于谷底,主要包括市区、江面、湖面;相比之下,地质灾害潜在风险较高的点FOS小于1,一般位于山峰或河岸附近的陡坡。该图符合我们对地质灾害分布的认知。为了进一步验证安全系数模型的准确性,根据2
15、017 年茂县大型山体滑坡事件的区域放大视图,在该事件中,山体滑坡摧毁了新磨村 40 所房屋,造成 10 人死亡,另有 73 人失踪。公开的灾害源点,与计算得到的FOS小于1 的区域吻合较好。综上所述,我们使用无限边坡模型来识别地质灾害可能触发的潜在位置。无限边坡模型使用地质相关数据作为输入参量,计算得到安全系数FOS地图,其中 FOS 值小于1的点对应于潜在的地质灾害风险点。模型的输出结果通过与土地利用图层的直观比较得到验证,并与历史事件中的灾害源点显示出良好的一致性。第二种基于风险点,使用边坡滑移模型分析其可能的影响范围、过流面积、滑坡体积。在获得潜在的地质灾害风险点后,下一步则是估算每个
16、位置对应的影响面积和体积。为了实现这个目标,我们首先要确定地质灾害的影响范围,以多边形进行表征,然后根据该多边形计算其面积和体积。由于地质灾害现象的复杂性、控制因素的多变性以及建模参数的不确定性,即使是严格的物理模型也很难精确地模拟边坡滑移,从而确定与实际相符的影响范围。此外,此类物理模型通常需要数值求解基于时空的偏微分方程组,如若对区域范围内所有的风险点进行求解,计算成本极高,甚至可能是无法实现的。因此,我们使用简化的准物理模型来近似每个边坡滑移的影响范围。该模型从动力学及摩擦定律出发,由易于求解的数学公式构成,因此使得计算非常高效。该模型基于数字高程的栅格图层,根据上面得到的各个风险点作为
17、边坡滑移的源点,通过迭代逐渐得到最终的影响范围,即多边形。图2展示了不同迭代轮次中多边形演变的一个示例。在每次迭代中,我们首先依照动力学中物体在重力作用下的运动规律确定边坡滑移的演化方向及质量。假设滑体始终沿坡下,且倾向于高程下降大的方向移动。换句话说,更多的滑体质量将随着高程下降幅度更大的方向滑动,反之亦然。此外,前次迭代中滑动积累的惯性也会对滑体在不同方向上的质量比例产生影响。在模型中,我们假设与前一次移动方向一致的方向将具有最大的质量比例,而与前一个移动方向成45度的方向将分配第二大的质量比例,依此类推。在确定方向及质量后,我们根据摩擦定律评估在每个方向上的滑动距离。每个方向上的动能由前
18、次迭代中累积的动能、势能变化,以及摩擦引起的能量损失决定。如果其动能水平低于某个阈值,则在该方向上的滑动终止。我们现在根据历史灾害事件评估该准物理模型的表现。在四川省的北川事件和云南省的王家坡事件中,模型生成的边坡滑移多边形区域和观察到的灾害区域几乎重叠,证明了我们模型的准确性。综上所述,我们使用基于基础动力学和摩擦定律的准物理模型来近似每个风险点的影响范围(即边坡滑移多边形),从而计算其面积及体积。在迭代中,模型首先基于高程差和惯性确定传播方向及质量。然后根据摩擦定律评估每个方向的运动距离。边坡滑移多边形与历史事件中的实际灾害区域显示出令人满意的一致性。值得一提的是,我们使用的准物理模型更多
19、地模拟了滑坡的滑动机理,而与其他地质灾害,如泥石流、崩塌等的运动机理并不相似。但在实际应用中,我们可以通过调整模型参数来近似得到其他地质灾害的影响范围、面积及体积。四、总结与展望地质灾害给中国,尤其是西南部地区,所带来的风险及损失不容小觑。针对此类灾害,不仅需要通过生物、工程等措施做好灾前防御,合理避灾,还需要发挥保险类金融工具的杠杆作用,建立有效的灾后重建补偿机制。其中,指数保险以灾害强度作为判赔依据,极大地提升了理赔效率,保障了应急抢险救灾的时效性。以滑坡体积为指数定义的地质灾害保险产品成功在四川省茂县等地落地。然而,地质灾害自身的巨大不确定性及历史数据的适用性给指数产品的设计及定价带来了
20、巨大的挑战。作为解决方案,本文详细介绍了针对地质灾害指数保险产品的定价模型。模型通过灾害频率以及灾害发生后的严重程度进行构建,其中平均滑坡体积或过流面积用以作为灾害严重程度的表征。一方面,我们使用无限边坡模型及地质相关数据建立安全系数地图,从而识别给定的地理范围内灾害可能触发的风险点。另一方面,我们针对每一个风险点所在位置,基于模拟边坡滑移的准物理模型得到其灾后影响范围,进而计算相应的滑坡体积(或面积)。上述算法中所用的模型均基于历史事件进行验证,证明了其有效性及准确性。通过定价模型,我们得到了给定地理范围内(如县、市等)地质灾害的发生频率以及一个包含影响范围、面积、体积的风险点集合。以此为基
21、础,本文成果可被进一步拓展。例如,我们可以叠加其他数据图层(如人口、公路网、房屋分布等)分析地质灾害可能造成的人身伤亡、公路损坏及财产损失。另外,随着诸如卫星影像、INSAR等技术的愈发成熟,不仅可以对灾害高发区进行监测,实现灾前预警,也可以在事后对灾害的规模进行快速有效的估测,为抢险救灾及灾后重建工作提供依据。这些技术可以与保险公司提供的保险保障相结合,打造对于地质灾害事前预警、事后定损的一体化保险服务。参考文献:1.Chen L , Mei L , Zeng B , et al. Failure probability assessment of landslides triggered
22、by earthquakes and rainfall: a case study in Yadong County, Tibet, ChinaJ. Scientific Reports, 2020, 10(1):16531.2.Dikshit A , Sarkar R , Pradhan B , et al. Rainfall Induced Landslide Studies in Indian Himalayan Region: A Critical ReviewJ. Applied Sciences, 2020(10):2466.3.刘杰、李建林、王乐华等:“ 三种边坡安全系数计算方法对比研究”,岩石力学与工程学报 ,2011年S1期。15