高中数学必修1基本初等函数复习课件(上课).ppt

上传人:wuy****n92 文档编号:86931884 上传时间:2023-04-15 格式:PPT 页数:53 大小:1.82MB
返回 下载 相关 举报
高中数学必修1基本初等函数复习课件(上课).ppt_第1页
第1页 / 共53页
高中数学必修1基本初等函数复习课件(上课).ppt_第2页
第2页 / 共53页
点击查看更多>>
资源描述

《高中数学必修1基本初等函数复习课件(上课).ppt》由会员分享,可在线阅读,更多相关《高中数学必修1基本初等函数复习课件(上课).ppt(53页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第二章第二章 基本初等函数基本初等函数 复习课复习课整数指数幂整数指数幂有理指数幂有理指数幂无理指数幂无理指数幂指数指数对数对数定义定义运算性质运算性质指数函数指数函数对数函数对数函数幂函数幂函数定义定义定义定义图象与性质图象与性质图象与性质图象与性质一、知识结构一、知识结构根式根式 如果如果xn=a,那么那么x叫做叫做 a 的的n次方根次方根(n th n th rootroot),其中其中n1,且且n N*.(n为奇数)为奇数)(n为偶数)为偶数)正正数的数的奇奇次方根是次方根是正正数数负负数的数的奇奇次方根是次方根是负负数数正正数的偶次方根有数的偶次方根有两个两个,且互为且互为相反数相反

2、数注:负数没有偶次方根,注:负数没有偶次方根,0的任何次方根都是的任何次方根都是0,记作,记作 根指数根指数根式根式被开方数被开方数2.2.根式的概念根式的概念1.1.方根的定义方根的定义即 若 则公式公式1.1.3.n3.n次方根的运算性质次方根的运算性质公式公式2.2.当当n为大于为大于1的的奇数奇数时时公式公式3.3.当当n为大于为大于1的的偶数偶数时时返回1.1.根式与分数指数幂互化:根式与分数指数幂互化:注意注意:在分数指数幂里,根指数根指数作分母分母,幂指数幂指数作分子分子.规定规定:正数的负分数指数幂正数的负分数指数幂:同时同时:0的正分数指数幂等于的正分数指数幂等于0;0的负分

3、数指数幂的负分数指数幂没有意义没有意义2.有理数指数幂的运算性质有理数指数幂的运算性质同底数幂相同底数幂相乘乘,底数不变指数相底数不变指数相加加幂的乘方底数不变幂的乘方底数不变,指数相指数相乘乘积的乘方等于乘方的积积的乘方等于乘方的积同底数幂相同底数幂相除除,底数不变指数相,底数不变指数相减减返回*一般地,当一般地,当a0且是一个无理数时且是一个无理数时,也是一个确定的实数也是一个确定的实数,故以上故以上运算律对实数指数幂同样适用运算律对实数指数幂同样适用.一般地,如果一般地,如果a(a(a a0,0,a a1)1)的的x x次幂次幂等于等于N N,即,即a ax xN N ,那么数,那么数x

4、 x叫做叫做以以a a为底为底N N的对数的对数,记作,记作x x=log=loga aN N.axN x logaN.1.对数的定义对数的定义P62:指数指数真数真数底数底数对数对数幂幂底数底数(1)负数与零没有对数负数与零没有对数(2)(3)2.几个常用的结论几个常用的结论(P63):axN logaNx.注意:注意:底数底数a的取值范围的取值范围真数真数N的取值范围的取值范围(a0,a1);N03.两种常用的对数两种常用的对数(P62)(1)常用对数:常用对数:(2)自然对数自然对数:4积、商、幂的对数运算法则积、商、幂的对数运算法则P65:如果如果a0,且,且a1,M0,N0有:有:2

5、.2.换底公式换底公式注:二者互为倒数656131212132)3()62(bababa-(4)题型一:指对运算题型一:指对运算题型二:已知值求代数式的值课堂例题1.指数函数的定义 一般地,函数一般地,函数y=logy=loga a x x(a(a0,0,且且a 1)a 1)叫做对数函数叫做对数函数.其中其中 x x是自变量是自变量,函数的定义函数的定义域是域是(0,+0,+)2.对数函数的定义根据指数式与对数式的互化3.反函数反函数通常用x表示自变量 y表示函数反函数互为反函数的两个函数图像关于直线 y=x 轴对称 函数函数y=ax(a1)y=ax(0a0,则y1若x0,则0y1 若x1若x

6、0,则0y1,则y0若0 x1,则y1,则y0若0 x0没有最值没有奇偶性4.指数函数与对数函数图像性质补充性质性质一性质二 y=ax01234底数互为倒数的两个指数函数的图象关于y轴对称。底数互为倒数的两个对数函数的图象关于x轴对称。在 x=1的右边看图象,图象越高底数越小.即底小图高底小图高底小图高底小图高在 y轴的右边看图象,图象越高底数越小.即底大图高底大图高底大图高底大图高0 xy1指数函数与对数函数指数函数与对数函数若图象若图象C1,C2,C3,C4对应对应 y=logax,y=logbx,y=logcx,y=logdx,则(则()A.0ab1cd B.0ba1dc C.0dc1b

7、a D.0cd1abxyC1C2C3C4o1D指数函数与对数函数指数函数与对数函数B(1)(2)(3)(4)OXy题型三:概念5函数yax1(0a1)的图象必过定点_答案:(0,0)7(2009年高考江苏卷改编)函数f(x)(a2a2)x,若实数m、n满足f(m)f(n),则m、n的大小关系为_答案:mn题型四:定点与单调性例20.32,log20.3,20.3这三数之间的大小顺序是()A0.3220.3log20.3B0.32log20.320.3Clog20.30.3220.3Dlog20.320.311.71 y=1.7 y=1.7x x在在R R上是增函数上是增函数又又2.532.53

8、 1.7 1.72.52.5 1.7 1.73 3在在a1=0.8,a2=0.6下的函数值下的函数值解:解:可以看做是函数可以看做是函数 a10,a20 0.80.81.31.30.60.61.31.3解:解:1.71.70.30.311,而,而0.90.93.13.1103x3,则A(3,3),又09x29,ylog3(9x2)2,则B(,2AB(3,2答案:(3,2 例4 当x2,8时,求函数 的最大值和最小值.例5 已知集合A=x|log2(-x)0解得f(x)的定义域是(-,-1)(1,+),f(-x)=-f(x),f(x)是奇函数.(2)证明:设x1,x2(1,+),且x1x11,x

9、2-x10,x1-10,x2-10,u(x1)-u(x2)0,即u(x1)u(x2)0,y=log u在(0,+)上是减函数,log u(x1)log u(x2),即log log ,f(x1)f(x2),f(x)在(1,+)上是增函数.返回(1)为了得到函数 的图像,只需把函数的图像上所有的点()A向左平移3个单位长度,再向上平移1个单位长度 B向右平移3个单位长度,再向上平移1个单位长度 C向左平移3个单位长度,再向下平移1个单位长度 D向右平移3个单位长度,再向下平移1个单位长度题型八:函数图像与奇偶性C(8)已知有 是奇函数,则常数m的值=_.(10)方程log3xx3的解的个数 (1

10、1)方程loga(x+1)+x22(0a1)的解的个数是()(A)0 (B)1 (C)2 (D)无法确定 C=11练习:2设函数.(1)确定函数f(x)的定义域;(2)判断函数f(x)的奇偶性;(3)证明函数f(x)在其定义域上是单调增函数;2设函数.(1)确定函数f(x)的定义域;(2)判断函数f(x)的奇偶性;(3)证明函数f(x)在其定义域上是单调增函数;1已知函数 (a1).(1)判断函数f(x)的奇偶性;(2)求f(x)的值域;(3)证明f(x)在(,+)上是增函数.5.函数y=x叫做幂函数,其中x是自变量,是常数.对于幂函数,我们只讨论时的情形xyO O11-1-1 函数函数性质性质 y=xy=x2y=x3y=x-1定义域定义域值域值域奇偶性奇偶性单调性单调性公共点公共点幂函数的性质幂函数的性质RRR0,+)0,+)0,+)增0,+)(0,+)减(-,0减(-,0)减RR奇奇奇增增增偶非奇非偶x|x0y|y0(1,1)xyO O11-1-1图象又如何?试写出函数试写出函数 的定义域的定义域,并指出其奇并指出其奇偶性偶性.小结小结1、基本概念2、指数式、对数式的运算3、指数函数、对数函数的图像性质及应用知识回顾知识回顾Knowledge Knowledge ReviewReview

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁