《函数的最大值与最小值(IV).ppt》由会员分享,可在线阅读,更多相关《函数的最大值与最小值(IV).ppt(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.52.5函数的最大值与函数的最大值与最小值最小值联盛中学联盛中学 刘贵有刘贵有一、复习引入一、复习引入 如果在如果在x0附近的左侧附近的左侧 f/(x)0,右侧右侧f/(x)0,那那么么,f(x0)是极大值是极大值;如果在如果在x0附近的左侧附近的左侧 f/(x)0 ,那那么么,f(x0)是极小值是极小值.2.导数为零的点是该点为极值点的必要条件导数为零的点是该点为极值点的必要条件,而不是充而不是充 分条件分条件.极值只能在函数的极值只能在函数的导数为零且在其附近左右导数为零且在其附近左右两侧的导数异号两侧的导数异号时取到时取到.3.在某些问题中在某些问题中,往往关心的是函数在一个定义区间
2、上往往关心的是函数在一个定义区间上,哪个值最大哪个值最大,哪个值最小哪个值最小,而不是极值而不是极值.1.当函数当函数f(x)在在x0附近有定义附近有定义,判别判别f(x0)是极大是极大(小小)值值的方法是的方法是:二、新课二、新课函数的最值函数的最值x xX X2 2o oa aX X3 3b bx x1 1y y 观察右边一个定义观察右边一个定义在区间在区间a,b上的函数上的函数y=f(x)的图象,你能的图象,你能找出函数找出函数y=f(x)在)在区间区间a,b上的最大上的最大值、最小值吗?值、最小值吗?发现图中发现图中_是极小值,是极小值,_是极大是极大值,在区间上的函数的最大值是值,在
3、区间上的函数的最大值是_,最小值是,最小值是_。f(x1)、f(x3)f(x2)f(b)f(x3)问题在于如果在没有给出函数图象的情况下,怎问题在于如果在没有给出函数图象的情况下,怎样才能判断出样才能判断出f(x3)是最小值,而是最小值,而f(b)是最大值呢?是最大值呢?三、例题选讲三、例题选讲例例1:求函数求函数y=x4-2x2+5在区间在区间-2,2上的最大值与最上的最大值与最小小 值值.解解:令令 ,解得解得x=-1,0,1.当当x变化时变化时,的变化情况如下表的变化情况如下表:从上表可知从上表可知,最大值是最大值是13,最小值是最小值是4.一般地,求函数一般地,求函数y=f(x)在在a
4、,b上的最大值与最小上的最大值与最小值的值的步骤步骤如下:如下::求求y=f(x)在在(a,b)内的极值内的极值(极大值与极小值极大值与极小值);:将函数将函数y=f(x)的各极值与端点处的函数值的各极值与端点处的函数值f(a)、f(b)比较比较,其中最大的一个为最大值其中最大的一个为最大值,最小的一个为最最小的一个为最小值小值.求函数的最值时求函数的最值时,应注意以下几点应注意以下几点:(1)函数的函数的极值是极值是在局部范围内讨论问题在局部范围内讨论问题,是一个是一个局部概局部概 念念,而函数的而函数的最值最值是对整个定义域而言是对整个定义域而言,是在整体范是在整体范围围 内讨论问题内讨论
5、问题,是一个是一个整体性的概念整体性的概念.(2)闭区间闭区间a,b上的连续函数一定有最值上的连续函数一定有最值.开区间开区间(a,b)内内 的可导函数不一定有最值的可导函数不一定有最值,但若有唯一的极值但若有唯一的极值,则此则此极极 值必是函数的最值值必是函数的最值.四、实际应用四、实际应用1.实际问题中的应用实际问题中的应用.在日常生活、生产和科研中在日常生活、生产和科研中,常常会遇到求函数的常常会遇到求函数的最大最大(小小)值的问题值的问题.建立目标函数建立目标函数,然后利用导数的方然后利用导数的方法求最值是求解这类问题常见的解题思路法求最值是求解这类问题常见的解题思路.在建立目标函数时
6、在建立目标函数时,一定要注意确定函数的定义域一定要注意确定函数的定义域.在实际问题中在实际问题中,有时会遇到函数在区间内只有一个有时会遇到函数在区间内只有一个点使点使 的情形的情形,如果函数在这个点有极大如果函数在这个点有极大(小小)值值,那么不与端点值比较那么不与端点值比较,也可以知道这就是最大也可以知道这就是最大(小小)值值.这里所说的也适用于开区间或无穷区间这里所说的也适用于开区间或无穷区间.满足上述情况的函数我们称之为满足上述情况的函数我们称之为“单峰函数单峰函数”.例例1:在边长为在边长为60cm的正的正 方形铁皮的四角切去相等方形铁皮的四角切去相等的正方形的正方形,再把它的边沿虚再
7、把它的边沿虚线折起线折起(如图如图),做成一个无做成一个无盖的方底箱子盖的方底箱子,箱底边长为箱底边长为多少时多少时,箱子的容积最大箱子的容积最大?最大容积是多少最大容积是多少?解解:设箱底边长为设箱底边长为x,则箱高则箱高h=(60-x)/2.箱子容积箱子容积 V(x)=x2h=(60 x2-x3)/2(0 x60).令令 ,解得解得x=0(舍去舍去),x=40.且且V(40)=16000.由题意可知由题意可知,当当x过小过小(接近接近0)或过大或过大(接近接近60)时时,箱箱子的容积很小子的容积很小,因此因此,16000是最大值是最大值.答答:当当x=40cm时时,箱子容积最大箱子容积最大
8、,最大容积是最大容积是16000cm3.类题类题:圆柱形金属饮料罐的容积一定时圆柱形金属饮料罐的容积一定时,它的高与底半它的高与底半径径 应怎样选取应怎样选取,才能使所用的材料最省才能使所用的材料最省?解解:设圆柱的高为设圆柱的高为h,底半径为底半径为r,则表面积则表面积S=2rh+2r2.由由V=r2h,得得 ,则则令令 ,解得解得 ,从而从而 ,即即h=2r.由于由于S(r)只有一个极值只有一个极值,所以它是最小值所以它是最小值.答答:当罐的高与底半径相等时当罐的高与底半径相等时,所用的材料最省所用的材料最省.练习练习:已知圆锥的底面半径为已知圆锥的底面半径为R,高为高为H,求内接于这个圆
9、求内接于这个圆 锥体并且体积最大的圆柱体的高锥体并且体积最大的圆柱体的高h.答答:设圆柱底面半径为设圆柱底面半径为r,可得可得r=R(H-h)/H.易得当易得当h=H/3 时时,圆柱体的体积最大圆柱体的体积最大.2.与数学中其它分支的结合与应用与数学中其它分支的结合与应用.xy例例1:如图如图,在二次函数在二次函数f(x)=4x-x2的图象与的图象与x轴所轴所 围成的图形中有一个围成的图形中有一个 内接矩形内接矩形ABCD,求这求这 个矩形的最大面积个矩形的最大面积.解解:设设B(x,0)(0 x2),则则 A(x,4x-x2).从而从而|AB|=4x-x2,|BC|=2(2-x).故矩形故矩
10、形ABCD的面的面积积为为:S(x)=|AB|BC|=2x3-12x2+16x(0 x2).令令 ,得得所以当所以当 时时,因此当点因此当点B为为 时时,矩形的最大面积是矩形的最大面积是五、小结五、小结1.求在求在a,b上连续上连续,(a,b)上可导的函数上可导的函数f(x)在在a,b上上的的 最值的步骤最值的步骤:(1)求求f(x)在在(a,b)内的极值内的极值;(2)将将f(x)的各极值与的各极值与f(a)、f(b)比较比较,其中最大的一个其中最大的一个 是最大值是最大值,最小的一个是最小值最小的一个是最小值.2.求函数的最值时求函数的最值时,应注意以下几点应注意以下几点:(1)要正确区分
11、极值与最值这两个概念要正确区分极值与最值这两个概念.(2)在在a,b上连续上连续,(a,b)上可导的函数上可导的函数f(x)在在(a,b)内未内未 必有最大值与最小值必有最大值与最小值.(3)一旦给出的函数在一旦给出的函数在(a,b)上有个别不可导点的话上有个别不可导点的话,不不 要忘记在步骤要忘记在步骤(2)中中,要把这些点的函数值与各极要把这些点的函数值与各极值值 和和f(a)、f(b)放在一起比较放在一起比较.3.应用问题要引起重视应用问题要引起重视.(1)利用函数的导数求函数的最值在求函数的值域、利用函数的导数求函数的最值在求函数的值域、不等式的证明及解法中有广泛的作用。不等式的证明及解法中有广泛的作用。(2)在实际问题中如果可以判定可导函数在定义域内在实际问题中如果可以判定可导函数在定义域内 存在最大存在最大(小小)值值,而且函数在这个定义域内又只有而且函数在这个定义域内又只有 唯一的极值点唯一的极值点,那么立即可以判定那么立即可以判定,这个极值点的这个极值点的函函 数值就是最大数值就是最大(小小)值值,这一点在解决实际问题时很这一点在解决实际问题时很 有用有用.六、作业六、作业