《预测模型数据处理方法.优秀PPT.ppt》由会员分享,可在线阅读,更多相关《预测模型数据处理方法.优秀PPT.ppt(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、预预 测测 模模 型型 最近几年,在全国高校生数学建模竞赛常常出最近几年,在全国高校生数学建模竞赛常常出现预料模型或是与预料有关的题目,例如疾病的传现预料模型或是与预料有关的题目,例如疾病的传播,雨量的预报,人口的预料等。什么是预料模型?播,雨量的预报,人口的预料等。什么是预料模型?如何预料?有那些方法?对此下面作些介绍。如何预料?有那些方法?对此下面作些介绍。预料的目的在于相识自然和社会发展规律,以及预料的目的在于相识自然和社会发展规律,以及在不同历史条件下各种规律的相互作用,揭示事物在不同历史条件下各种规律的相互作用,揭示事物发展的方向和趋势,分析事物发展的途径和条件,发展的方向和趋势,分
2、析事物发展的途径和条件,使人们尽早地预知将来的状况和将要发生的事情,使人们尽早地预知将来的状况和将要发生的事情,并能动地限制其发展,使其为人类和社会进步服务。并能动地限制其发展,使其为人类和社会进步服务。一一 预料的前期准备工作预料的前期准备工作 为保证预料结果的精确度,预料之前必需做一系为保证预料结果的精确度,预料之前必需做一系列的准备工作:列的准备工作:(一)数据的准备:(一)数据的准备:数据的收集和整理;数据的收集和整理;数据的分析和处理;数据的分析和处理;数据的内涵及数量;数据的内涵及数量;数据处理的原则数据处理的原则 精确,处理后的数据能正确反映事物发展的将来精确,处理后的数据能正确
3、反映事物发展的将来趋势和状况;趋势和状况;刚好,数据的处理要刚好;刚好,数据的处理要刚好;适用,处理的数据能满足建模的须要;适用,处理的数据能满足建模的须要;经济,要尽量削减数据处理的费用,以降低预料经济,要尽量削减数据处理的费用,以降低预料成本;成本;一样,处理的数据在整个比较性。运用期间内必一样,处理的数据在整个比较性。运用期间内必需是一样的,具有可比较性需是一样的,具有可比较性 数据处理的方法数据处理的方法(1)判别法)判别法 通过对历史数据的推断,选择其中可代表整个通过对历史数据的推断,选择其中可代表整个预料过程中很可能发生的模式的数据作为建模数据预料过程中很可能发生的模式的数据作为建
4、模数据(2)剔除法)剔除法 假如数据量比较大,且非必需具备连续的数据假如数据量比较大,且非必需具备连续的数据量,这时可剔除数据中受随机干扰的异样值;量,这时可剔除数据中受随机干扰的异样值;(3)平均值法)平均值法 在数据比较少或须要连续数据时,则可实行平在数据比较少或须要连续数据时,则可实行平均值法对数据进行处理。均值法对数据进行处理。(4)拉平法)拉平法 由于条件发生变更,常常使一些厉史数据不能由于条件发生变更,常常使一些厉史数据不能反映现时的状况,例如,大型钢铁厂、化肥厂、或反映现时的状况,例如,大型钢铁厂、化肥厂、或油气田的建成投产或开发,可以使产量猛增,这时油气田的建成投产或开发,可以
5、使产量猛增,这时历史数据将发生突变,出现一个转折,如用这类数历史数据将发生突变,出现一个转折,如用这类数据建模,则须要处理。这时拉平法是一种较好的方据建模,则须要处理。这时拉平法是一种较好的方法。它的原理是对转折点前的数据加一个适当的量法。它的原理是对转折点前的数据加一个适当的量值,使其与折点后的数据走向一样。值,使其与折点后的数据走向一样。(5)比例法)比例法 销售条件与环境的变更常常会引起一个企业产销售条件与环境的变更常常会引起一个企业产品市场销售比例的变更。当比例变更较大时,说明品市场销售比例的变更。当比例变更较大时,说明销售条件与环境对销售的影响己超过其他因素对销销售条件与环境对销售的
6、影响己超过其他因素对销售的影响,也说明以前的销售统计数据所体现出的售的影响,也说明以前的销售统计数据所体现出的销售发展规律不再适用之于目前的状况了。假如仍销售发展规律不再适用之于目前的状况了。假如仍旧利用这些数据建立预料模型,将无法体现销售条旧利用这些数据建立预料模型,将无法体现销售条件和环境变更后的销售量变更的规律,用这样的模件和环境变更后的销售量变更的规律,用这样的模型进行预料,将会造成较大的误差。因此,假如还型进行预料,将会造成较大的误差。因此,假如还想利用这些数据建立模型,进行预料,就应当把它想利用这些数据建立模型,进行预料,就应当把它们处理成能体现条件与环境发生变更之后的状况的们处理
7、成能体现条件与环境发生变更之后的状况的数据。对于这类数据,比例法就是一种比较有效的数据。对于这类数据,比例法就是一种比较有效的处理方法。处理方法。(6)移动平均和指数平滑法)移动平均和指数平滑法假如原始数据总体走向具有确定规律性,但因受随假如原始数据总体走向具有确定规律性,但因受随机因素干扰,数据离散度很大,接受平均值法也难机因素干扰,数据离散度很大,接受平均值法也难以处理。这时可接受一次、二次、甚至三次移动平以处理。这时可接受一次、二次、甚至三次移动平均和指数平滑对数据进行平滑,用平滑的数据建模。均和指数平滑对数据进行平滑,用平滑的数据建模。在分解预料时,为处理季节数据,则必需接受高次在分解
8、预料时,为处理季节数据,则必需接受高次幂的移动平均法,对数据平滑。幂的移动平均法,对数据平滑。(7)差分法)差分法 有些模型,例如鲍克斯有些模型,例如鲍克斯-詹金斯模型只能处理平詹金斯模型只能处理平稳数据,假如原始数据为非平稳数据,则需釆取差稳数据,假如原始数据为非平稳数据,则需釆取差分处理。差分有三种主要类型:前向差分、后向差分处理。差分有三种主要类型:前向差分、后向差分、中心差分。分、中心差分。前向差分:在处理时间数列时,一阶前向差分定义前向差分:在处理时间数列时,一阶前向差分定义为为一阶前向差分是当时间由一阶前向差分是当时间由t变到变到t+1时,时,的变更量。的变更量。二阶前向差分定义为
9、二阶前向差分定义为后向差分:在处理时间数列时,一阶后向差分定义后向差分:在处理时间数列时,一阶后向差分定义为为一阶后向差分是当时间由一阶后向差分是当时间由t递推到递推到t-1时,时,的变更量。的变更量。二阶后向差分定义为二阶后向差分定义为中心差分:在处理时间数列时,一阶中心差分定义中心差分:在处理时间数列时,一阶中心差分定义为为二阶中心差分为二阶中心差分为 在处理时间数列时,主要应用后向差分。一次在处理时间数列时,主要应用后向差分。一次多项式数据通过一阶差分就可转换为平稳数据,二多项式数据通过一阶差分就可转换为平稳数据,二次多项式和三次多项式数据分别通过二阶和三阶差次多项式和三次多项式数据分别
10、通过二阶和三阶差分可转换为平稳数据,而三次以上的高次多项式在分可转换为平稳数据,而三次以上的高次多项式在应用中很少接受。应用中很少接受。二二 预料的数学准备预料的数学准备 在预料过程中须要很多数学学问,主要有在预料过程中须要很多数学学问,主要有微分方程、概率与数理统计、线性规划和微分方程、概率与数理统计、线性规划和非线性规划等等。但运用最多的是统计学非线性规划等等。但运用最多的是统计学的相关学问:常用的统计量、参数的估算、的相关学问:常用的统计量、参数的估算、假设检验、区间估计等。这些我们就不做假设检验、区间估计等。这些我们就不做介绍了。介绍了。定量预料法定量预料法 时间序列模型时间序列模型
11、时间序列模型主要探讨事物的自身发展规时间序列模型主要探讨事物的自身发展规律,借以预料事物的将来趋势。主要方法有移动律,借以预料事物的将来趋势。主要方法有移动平均、指数平滑、分解预料、鲍克斯詹金斯模型、平均、指数平滑、分解预料、鲍克斯詹金斯模型、多变量模型以及类推法等。多变量模型以及类推法等。特点和应用范围特点和应用范围 时间序列一般指一组按时间时间序列一般指一组按时间依次排列的数据,展示了探讨对象在确定时期的依次排列的数据,展示了探讨对象在确定时期的发生变更过程。时间序列模型,就是依据预料对发生变更过程。时间序列模型,就是依据预料对象时间变更特征,探讨事物自身的发展规律,探象时间变更特征,探讨
12、事物自身的发展规律,探讨将来发展趋势,是一种重要的定量预料方法,讨将来发展趋势,是一种重要的定量预料方法,包括多种模型,主要适用于经济预料、商业预料、包括多种模型,主要适用于经济预料、商业预料、需求预料、库存预料等,预料期限主要为中、短需求预料、库存预料等,预料期限主要为中、短期,不适用于有拐点的长期预料。期,不适用于有拐点的长期预料。(一)移动平均值模型(一)移动平均值模型移动平均法是一种最简洁的适应模型,是在算术平均移动平均法是一种最简洁的适应模型,是在算术平均的基础上发展起来的一种预料方法。的基础上发展起来的一种预料方法。算术平均虽能代表一组数据的平均水平,但它不能反算术平均虽能代表一组
13、数据的平均水平,但它不能反映数据的变更趋势,而原始数据虽然存在某种趋势,映数据的变更趋势,而原始数据虽然存在某种趋势,但数据可能是零散的或杂乱无章的,无法干脆加以分但数据可能是零散的或杂乱无章的,无法干脆加以分析。移动平均法克服了上述弱点,其基本方法是,选析。移动平均法克服了上述弱点,其基本方法是,选一个固定的周期一个固定的周期N,对数据进行平均,每递推一个周,对数据进行平均,每递推一个周期就加上后一个数据,舍去初始数据,依次类推,直期就加上后一个数据,舍去初始数据,依次类推,直至把数据处理完毕。至把数据处理完毕。以以N=5为为例:例:表示第五、第六个周期的一次移表示第五、第六个周期的一次移动
14、动平均平均值值,依次依次类类推。若移推。若移动动平均的周期平均的周期为为N,则则可得到可得到计计算移算移动动平均平均值值的一般公式的一般公式:其中,其中,表示第表示第t期的一次移期的一次移动动平均平均值值 可见,移动平均法事实上是对于某一期数据,可见,移动平均法事实上是对于某一期数据,取前取前N N个数据进行平均,个数据进行平均,N N个数权数相同,而其它数个数权数相同,而其它数据的权这样,经过移动平均,将消退数据列中异样据的权这样,经过移动平均,将消退数据列中异样的因素,对数据进行修匀。一般状况下,假如数据的因素,对数据进行修匀。一般状况下,假如数据没有明显的周期变更和趋势变更,可用第没有明
15、显的周期变更和趋势变更,可用第t t期的一期的一次移动平均值作为次移动平均值作为t+1t+1期的预料值,即期的预料值,即其一般公式其一般公式为为 表表1 1中的的第一列和其次列,即是原始数据与中的的第一列和其次列,即是原始数据与一次移动平均值的对比。始取一次移动平均值的对比。始取N=3N=3的的3 3期移动平均,期移动平均,则第三期数据的移动值为则第三期数据的移动值为5766.335766.33,是,是l l由(由(560056005796579659305930)/3/3得到的。如用于预料,它可以作为得到的。如用于预料,它可以作为第第4 4期的预料值。在一次移动平均值的基础上,应期的预料值。
16、在一次移动平均值的基础上,应用移动平均的原理,还可以进行二次甚至多次的移用移动平均的原理,还可以进行二次甚至多次的移动平均,二次移动平均,就是以一项移动平均值为动平均,二次移动平均,就是以一项移动平均值为原始数据,再进行一次移动平均,如以原始数据,再进行一次移动平均,如以N=5N=5为例:为例:其公式为其公式为其公式为其公式为式中:式中:表示第表示第9期的二次移期的二次移动动平均平均值值,其一般公式其一般公式为为 二次移动平均使原始数据得到了进一步修匀,二次移动平均使原始数据得到了进一步修匀,使其显现线性趋势。表使其显现线性趋势。表1 1中的第三列数据为中的第三列数据为N=3N=3的二的二次移
17、动平均值。次移动平均值。移动平均值移动平均值 表(表(1)式中:式中:-预预料超前期数料超前期数通通过查过查表(多表(多项项式模型参数估算公式)可知:式模型参数估算公式)可知:对对于上表中的数据,如以于上表中的数据,如以11期数据期数据预预料料12期期值值,当取当取N=3时时,则则有:有:在二次移动平均值的基础上,可建立线性模型:在二次移动平均值的基础上,可建立线性模型:预料方程为预料方程为 运用移动平均法,最重要的是移动周期运用移动平均法,最重要的是移动周期N的选的选择。因为择。因为式中:式中:移移动动平均平均值值方差方差 原始数据点方差原始数据点方差N 数据点数数据点数 也就是说,移动平均
18、修匀后的方差,随着也就是说,移动平均修匀后的方差,随着N的加大而削的加大而削减。也就是减。也就是N越大,对原始数据修匀实力越强。下表数据可越大,对原始数据修匀实力越强。下表数据可清晰反映这一规律。清晰反映这一规律。(某日用品电器销售额的移动平均预料)表(某日用品电器销售额的移动平均预料)表(2)然而修匀实力与对外界变更的反映速度是相互然而修匀实力与对外界变更的反映速度是相互冲突的,两者不能兼得。因此,对于冲突的,两者不能兼得。因此,对于N N值一般应视值一般应视具体状况,接受折衷方法确定。依据过程的实际发具体状况,接受折衷方法确定。依据过程的实际发展趋势,展趋势,N N值大体有如下四种选择方法
19、:值大体有如下四种选择方法:(1 1)水平式)水平式 也就是趋势保持不变,移动平均值也就是趋势保持不变,移动平均值是无编差的,是无编差的,M M值与值与N N值无关。值无关。(2 2)脉冲式)脉冲式 趋势仅在某一段时间突然增加或削趋势仅在某一段时间突然增加或削减,随后又保持不变,减,随后又保持不变,N N取得越大,取得越大,M M的误差越小,的误差越小,因此因此N N应取得较大些。应取得较大些。(3 3)阶梯式)阶梯式 趋势仅在起先一段时间保持不变,趋势仅在起先一段时间保持不变,然后增加或削减到一个新的水平后又保持不变,然后增加或削减到一个新的水平后又保持不变,N N取得越小,取得越小,M M
20、的误差越小,因此的误差越小,因此N N应取得较小。应取得较小。(4)斜坡式)斜坡式 趋势周期的递增或递减,趋势周期的递增或递减,M总是比实总是比实际趋向落后,因此际趋向落后,因此N应取得越小越好。应取得越小越好。一般状况下,如欲加大原始数据的修句力度,一般状况下,如欲加大原始数据的修句力度,则则N宜取大些,假如希望加大对外界变更的反映力宜取大些,假如希望加大对外界变更的反映力度,刨度,刨N宜取小些。宜取小些。N的取值范围一般为的取值范围一般为320。例例 我国我国19801990年工业劳动人数见表,用二次年工业劳动人数见表,用二次移动平均数法预料移动平均数法预料19911994年的劳动人数。年
21、的劳动人数。19801990年我国工业劳动人数(万人)(表年我国工业劳动人数(万人)(表3)首先,选择移动平均周期首先,选择移动平均周期N。本例中数据趋势。本例中数据趋势较明显,呈直线趋势,为尽量反映近期变更动向,较明显,呈直线趋势,为尽量反映近期变更动向,可取可取N=3。利用移动平均公式,首先计算一次移动。利用移动平均公式,首先计算一次移动平均数:平均数:在此基础上再计算二次移动平均数:在此基础上再计算二次移动平均数:计算结果见(表)。依据表(计算结果见(表)。依据表(3)的数据可建)的数据可建立线性趋势模型:立线性趋势模型:前已前已计计算得:算得:则则:由此得由此得19911994年劳动人
22、数分别为年劳动人数分别为8338.7,8638.2,8937.7,和,和9236.2万人。万人。(二)(二)指数平滑模型指数平滑模型 在时间序列预料过程中,一般来说历史数据对在时间序列预料过程中,一般来说历史数据对将来发展的影响是不等价的,数据由近及远对将来将来发展的影响是不等价的,数据由近及远对将来的影响价值递减。假如这种递减遵循指数规律,并的影响价值递减。假如这种递减遵循指数规律,并以此进行预料,则可接受指数平滑法。指数平滑法以此进行预料,则可接受指数平滑法。指数平滑法比移动平均法须要的数据量少,计算更为便利。比移动平均法须要的数据量少,计算更为便利。一次指数平滑公式为一次指数平滑公式为其中其中 t期数据的指数平滑期数据的指数平滑值值,a 平滑常数,平滑常数,0a1,现现期数据期数据值值。对上式递推绽开则得依此类推可得一次指数平滑的一般公式为 上式表明,数据列上式表明,数据列 的权数分别是的权数分别是a,a(1-a),即离即离t时时刻越刻越远远的数据,的数据,权权数越小,而且数越小,而且权权数的数的变变更呈指数几何更呈指数几何级级数。数。用一次指数平滑法进行预料时,将用一次指数平滑法进行预料时,将t期的平滑期的平滑值作为值作为t+1期的预料值,即期的预料值,即