转子平衡、临界转速及强度优秀PPT.ppt

上传人:l**** 文档编号:86831486 上传时间:2023-04-15 格式:PPT 页数:53 大小:2.85MB
返回 下载 相关 举报
转子平衡、临界转速及强度优秀PPT.ppt_第1页
第1页 / 共53页
转子平衡、临界转速及强度优秀PPT.ppt_第2页
第2页 / 共53页
点击查看更多>>
资源描述

《转子平衡、临界转速及强度优秀PPT.ppt》由会员分享,可在线阅读,更多相关《转子平衡、临界转速及强度优秀PPT.ppt(53页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、转子平衡、临界转速与强度化工机械强度与振动第一节 转子平衡在旋转机械中,由于转子质量偏心引起的强迫振动是很常见的。关于偏心质量引起的强迫振动,在振动理论中得到系统的稳态响应为:式中M为系统的等效质量,m为转子偏心质量,e为偏心矩。从中可以看出振幅x与偏心质量和偏心矩成正比,要减小振动就要使转子质量分布尽可能匀整。(4-1)(4-2)化工机械强度与振动一、转子刚性动平衡叶轮机械转子的质量偏心来源于材质的不匀整,加工、装配误差等,事实上很难消退。但如偏心量过大,则会使叶轮机械在运转中猛烈振动。所以转子在运行前都是作平衡试验,力求偏心量尽量小,使得叶轮机械能平稳运行。对于一个完全平衡的转子,理论上要

2、求转子旋转时的离心惯性力的合力与合力偶都等于零。转子对轴承只有自重引起的静力作用。反之转子即处于不平衡状态。转子偏心质量可引起转子的静不平衡或动不平衡。1.静平衡问题当偏心质量全部处于一个平面内,如薄圆盘,在旋转时将产生离心惯性力F力在圆盘平面内,并通过转轴,所以只有一个合力,无合力偶,如图4-1a这种不平衡可用静力试验法来找,将转子放到一对水平轨道上,轻轻滚动,转子总是在偏心质量垂直向下的位置停下来。这时只要在轮子相反的方向加配重或在相同的方向钻孔,去掉一些重量就可以达到目的。最终要使转子在重力作用下能随遇平衡。此时就称转子已达静平衡了。图4-1化工机械强度与振动2.动平衡问题如图4-2转子

3、,两个薄圆盘各有一同样大小的偏心质量m,其偏心距e也相等。明显此转子是静平衡的(F=0)。但当转子旋转时,就会有一合力偶 ,此合力偶最终作用到支承上,引起机组振动。这就是所谓动不平衡。转子动不平衡需用动平衡机做试验才能检验。薄圆盘装斜了也可产生动不平衡。在转速较高的状况下,只要有很小的偏斜(约1),就会引起超过静反力百倍以上的反力。现有如图4-3所示长转子,长度为l,半径为R。在距左端l/3的平面内垂直方向有偏心量 ,在中间平面内水平方向有偏心量化工机械强度与振动偏心质量产生的离心惯性力总可以合成一通过旋转轴并与之垂直的合力和一个合力偶,要平衡它们一般可选转子的两个端面和加配重或钻削掉一些重量

4、。重量的大小和方位很简洁确定。设转子以转速旋转,令将 用同在垂直平面且又分别位于两端面的平行力 代替,则应有同理,对 有将几何相加,可得化工机械强度与振动现可在端面半径R处,去掉质量为 ,则方位为端面半径R处钻孔,去掉质量为 ,则也可在相反的方向加配重,这样转子就可达到刚性动平衡。如 不垂直,则可将它们分解到垂直与水平方向,而后如上所算。化工机械强度与振动二、转子柔性动平衡(高速动平衡)由离心惯性力引起的动挠度是和转速有关的。因此,在低速时平衡(又称刚性平衡)的转子,到高速时又可能会失稳而猛烈振动。校正这种动不平衡必需把离心惯性力引起的动挠度影响考虑进去,故称为柔性动平衡或高速动平衡。图4-4

5、为一经过低速动平衡的转子,不平衡重量为 ,配重为 ,转子半径为R。设转速提高后转子旋曲如图4-4(b)所示,这时离心惯性力为化工机械强度与振动由于已经过静平衡,所以代入上式有由上式知,当转速提高后由于动挠度的影响,经过低速动平衡的转子又出现了新的不平衡惯性力,使转子产生振动。如转速进一步提高,使转子二阶以至更高振型出现,那么由于振型的变更,将又有新的不平衡。对柔性转子的平衡,常用的是振型平衡法。首先对转子进行低速平衡,以消退一些明显的不平衡量,然后使转速接近第一阶临界转速,在转子中部配量以消退一阶振型时的不平衡量(设为对称转子);再使转速接近其次阶临界转速,在二阶振型的反节点处加配重以消退二阶

6、振型m不平衡量,这样始终进行到稍超过转子的工作转速。然后再对转子进行一次刚性动平衡。(4-3)化工机械强度与振动其次节 转子的临界转速一、单圆盘转子的临界转速现考察一单圆盘无重量轴系统,如图4-5所示,圆盘放置在中点。设转子以匀角速度绕AOB轴线旋转,由于离心力的作用,使转轴产生动挠度,呈弓状。由图可见,轴中心的挠度为OO。此弓状平面又以确定角速度绕轴承连心线AOB旋转,这两种转动的角速度并不确定相同。此种现象称为转轴的弓状旋曲,或称涡动,进动。这里仅探讨转速相等的状况,即所谓同步正进动。同步正进动是工程中最为常见的。取o点为坐标原点,O点的坐标为(x,y),则圆盘质心C的坐标为(x+ecos

7、t,y+esin t),可得质心C的运动方程为在转子的加工及平衡过程中,使转子的重心与其几何轴线完全重合是很难做到的,总有残余不平衡度。设圆盘的质量为m,对称安装在轴上,盘的质心c的偏心距为e,即OC=e,O为圆盘的几何中心。轴承中心线穿过盘平面O点。图4-5 由质量不平衡产生的对称弓状旋曲化工机械强度与振动或式中k为转轴的横向弯曲刚度,c为阻尼其解为式中(4-4)(4-5)(4-6)化工机械强度与振动O(x,y)点的运动轨迹是一个圆,其半径即转轴的动挠度从以上两式可见动挠度R随频率比r的变更而变更。当r值较小时(r1即 时,如r1,。(4-7)(4-8)化工机械强度与振动具有粘性阻尼的弓状旋

8、曲转轴的振幅和相位的关系见下图为了明显,忽视系统的阻尼,当r1时,R为负值,表示动挠度与偏心距反向。当r,Re,这时轴绕圆盘质心旋转,质心C与O点重合,称为自动定心。其幅值和相频图见图4-7。图4-6 具有粘性阻尼同步正进动时转轴的振幅和相位关系化工机械强度与振动由于在转子的同步正进动中,转子绕AOB轴线旋转的角速度与弓状平面绕轴承连心线AOB旋转的角速度相等,所以圆盘相对弓状平面并无旋转。因此转轴受拉伸的纤维始终受拉而受压缩的总是受压,并无交变应力产生。此点和轴的横向弯曲振动是不同的,所以说弓状旋曲的转轴并无振动。但转子的离心惯性力却对轴承产生一个交变力,并导致支承系统发生强迫振动。这是在临

9、界转速时感到猛烈振动的缘由。正因为这样,工程上常把临界转速是支承发生猛烈振动的现象和共振不加区分。事实上这是两种不同的物理现象。图4-7 无阻尼时单盘转子弓状旋曲的幅频图(a)与相频图(b)化工机械强度与振动式中y=f(x)为梁的挠度函数二、等直径轴的临界转速1.振动的微分方程及解求等直径轴的临界转速,也就是求相应等截面梁的横振固有频率。一般滑动轴承都可视为铰链支坐。这样滑动支承的轴便可作为简支梁探讨,如图示:从材料力学中知梁某截面上参数间的静力关系为转角弯矩剪力分布力(4-9)(a)(b)(c)(d)图4-8 简梁的挠度和转角化工机械强度与振动在系统自由振动中,惯性力是作用在系统上的唯一载荷

10、,惯性力的线集度m为单位长度梁质量。从4-9(d)式中有(4-10)依据系统具有与时间无关的确定的振型之特性,可设上式的解为T(t)为简谐函数故(4-11)代入4-10式,得式中或(4-12)(4-13)化工机械强度与振动式4-12是四阶常微分方程,它的解可取为 ,代入可得特征方程它的四个根为该式的解为又故通解形式为上式有A、B、C、D四个积分常数和 两个待定系数,但简梁有四个端点条件,再加上两个振动初始条件,恰好可确定这六个常数。(4-14)化工机械强度与振动2.固有频率和主振型对于等截面简支梁端点条件为由1)可得由3)可得得由2)可得由4)可得由上两方程可得(4-15)此即简支梁横振动的频

11、率方程,它的根为化工机械强度与振动又相应的主振型为(4-16)(4-17)对于两端铰支等直径轴而言,据式4-16,各阶临界转速有如下关系由以上可见,当把轴看做是连续体时,其临界转速有无限多个。其基频为 。当转轴的工作转速 时,称此轴为刚轴。当转轴的工作转速 ,则称为柔轴。一般柔轴的工作转速多在 与 之间,且要求图4-9 等直径轴及其1,2,3阶振型化工机械强度与振动主轴的扭矩为三、轴的强度计算对叶轮式机械主轴的要求主要是刚度,即要求精确地计算出株洲的临界转速,确定合理的工作转速,同时进行尽可能精确的动平衡。一般只要刚度合乎要求,轻度总是足够的。主轴常规的强度计算,仍按材料力学中的介绍,考虑弯矩

12、及轴向力的联合作用,并由选用的强度理论得出相应的相当应力值。因扭矩 所引起的剪应力为式中 为轴的抗扭截面横量对外径为d,内径为 的空心轴在因转子自重所引起的弯矩M和轴向力P共同作用下,主轴横截面上所产生的正应力为(4-18)(4-19)(4-20)化工机械强度与振动轴除了对刚度和强度有较高的要求外,还有下列要求式中W为抗弯截面横量。对实心与空心轴分别为如按第三强度理论,相当应力为强度条件为对于合金钢,=100130MPa。对于碳钢100MPa。轴要求较高的平安系数。1)良好的工艺性2)结构的稳定性,保证在运转期内有不变的机械性能3)有足够的抗腐蚀实力(4-21)化工机械强度与振动第三节 传递矩

13、阵法求系统固有频率一、基本概念传递矩阵法可用计算系统各种振动形式的固有频率,诸如叶轮机械翼型叶片振动问题,轴系的扭转和横振即临界转速问题。传递矩阵法是一种试凑方法。首先依据系统的性质,确定截面上的一组特性参数,称为状态向量,然后依据时段截面的边界条件,给定该截面状态向量的一组参数值,选一个试验频率,通过传递矩阵计算下一截面的状态向量,直至末端截面。下面可以看到传递矩阵包含了系统的自由振动微分方程,如所得到末端截面对量能满足该截面的边界条件时,则表示所选定的频率就系统的固有频率。传递矩阵法可用来求系统随意阶固有频率,且计算过程完全一样。对于扭转轴,n截面上的状态向量为分别为n截面的扭转角和扭矩。

14、化工机械强度与振动对于横振动的梁,n截面上的状态向量为分别为n截面上的挠度,转角,弯矩和剪力。各变量的符号规则规定如下:对于图4-10(a)中的扭振系统,规定截面n的外法线与坐标正向一样时为正面,如扭转角与扭矩的矢量方向(按右手规则)与正面外法线方向一样时为正。对于图b中的弯曲系统,挠度y,剪力Q向上为正,转角与弯矩M逆钟向为正。图4-10 状态向量、广义力与广义位移化工机械强度与振动二、传递矩阵法求轴系临界转速求轴系的临界转速即是求轴系横振固有频率。用传递矩阵法求轴系临界转速,一般称为普劳尔(Prohl)法。图4-11表示轴的一个典型段,它包含无质量跨距与集中质量。段的弯曲特性用跨距的场传递

15、矩阵来描述,段的惯性效应用集中质量的点传递矩阵描述。第i跨距 和集中质量 受力分析见上图。段梁的弹性变形也示意出来。从分别体图可得剪力和弯矩的平衡方程式如下:(4-22)图4-11 轴的传递矩阵的推导(a)跨的分别体简图(b)质量分别体简图化工机械强度与振动该梁段端面的位移y与可表示如下:(4-23)联合22与23式得:化工机械强度与振动用场传递矩阵表示为对集中质量 有可导出点传递矩阵如下:(4-24)(4-25)化工机械强度与振动将24代入25式可得联系状态向量 与 的传递矩阵:(4-26)化工机械强度与振动或简写为即为所求传递矩阵(4-27)运用递推公式4-26,便可将梁的末端与始端状态向

16、量 联系起来(4-28)化工机械强度与振动对于梁(轴)的问题,一般边界条件是yMQ简支00Q自由y00固定00MQ可见在梁的始端与末端都有两个非零的边界条件,哪个参数非零则取决于支座类型。在计算固有频率即临界转速的计算过程中,逐次代入进行试凑。当某个能同时满足梁两端的边界条件,即为所求的临界转速。传递矩阵法在求系统的高阶固有频率时精确度会下降。解决的方法是增加分段数和运用双精度(在编程时)运算。并把固有频率截断在某一阶(即振型截断法)。不去求系统振动过程中次要的,也不很牢靠的高阶固有频率。实践证明,在计算时分段数高于所求临界阶数的56倍即可。即分段数nK(56)。化工机械强度与振动例题:如图所

17、示悬臂梁集中质量系统的固有频率。设梁的弯曲刚度解:所用递推公式为始端截面即固定端的状态向量为为固定端的未知弯矩与剪力。在传递矩阵中始端状态向量中的非零参数均为未知数。化工机械强度与振动由下式有化工机械强度与振动由得梁自由端处弯矩,剪力必为零,即化工机械强度与振动欲使线性齐次方程组有非零解,则的系数行列式必为零,即这就是系统的频率方程式。对于已知数据,相应的方程式为:或固有频率为或化工机械强度与振动用传递矩阵法求轴系临界转速问题,在理论上已解决。下面探讨工程中常遇到的典型状况。1.单跨两端铰支,支坐为刚性支承集中质量o和n分别放置在左右两刚性铰链支承上,轴为单跨。与固定端梁一样,我们把支坐反力(

18、动反力)视为未知数。在下面的叙述中,为了简便,将状态变量左上角标R省掉。于是始端状态向量 的初参数为按递推公式有递推公式是状态变量的线性方程,而一般梁的边界条件总有两个为零的初参数。铰支的非零初参数为 ,因此第i截面的状态变量可表示为初参数 的线性组合。选定一试算转速后,可先令 ,而 得到第一项计算值 ,如下式。图4-12化工机械强度与振动临界转速的搜寻同样可接受二分法。再令 ,而 ,得到其次次计算值则有递推到末端截面,有据末端的边界条件应有上式有非零解的条件为此式即两端刚性铰支单跨梁的频率方程由上式可得残矩(4-29)(4-30)(4-31)(4-33)(4-32)化工机械强度与振动2.两端

19、自由,中间支承为刚性支坐应从 起算,对于自由端有选定试算频率后,利用点传递矩阵得然后按递推公式计算。以上均用两次法进行。非零初参数为 和 ,在算到左支承i时,因挠度、转角和弯矩保持连续,有可得图4-13(4-34)化工机械强度与振动剪力Q1在i截面处发生突跳,突跳值为支反力 ,由于 未知,故新参数为由以上两式可见,经过刚性支坐i后,将增加一个新参数 而削减一初参数 因此I,s支坐间某截面状态变量就可表示为参数 的线性组合。用两次法来得到K截面的状态变量:第一次取 ,按递推公式可得 其次次取 ,同样可得则有同理,s支坐后各截面状态向量应表达为 的线性组合(4-35)化工机械强度与振动或写成依据末

20、端截面的边界条件应有上式有非零解的条件为此即两端自由刚性铰支梁的频率方程,残矩为(4-36)(4-37)(4-38)化工机械强度与振动三、叶轮回转力矩的计算在转子临界转速的计算中,较粗略的做法是把叶轮作为集中质量,因此只考虑叶轮的离心惯性力。当要求计算更精确时,就必需将叶轮作为圆盘处理,因此不仅要计算叶轮的离心惯性力,还要计算其惯性力矩,即回转力矩。当叶轮处于轴的中点时,转子的弯曲并不使叶轮发生偏转,见图4-14a。当转子旋曲时,叶轮上各点惯性力都在同一平面内,并不产生惯性力矩,只需考虑其离心惯性力的作用,但当叶轮靠近一端支坐,或在外伸段上时,转轴的变形使叶轮产生倾侧,见图4-14b,在这种状

21、况下,当转子旋曲时,叶轮在空间摇摆。由于叶轮作空间运动时动量矩矢量方向的变更,它必定受到转轴作用于它的一个力矩,因此转轴就受到一个反作用力矩,这就是圆盘的惯性力矩,通常称为回转力矩或陀螺力矩。图4-14 转子弓状旋曲化工机械强度与振动因此圆盘沿这两个方向的动量矩重量为式中 分别为圆盘相应对称轴的极转动惯量和对直径的轴转动惯量。再求出的垂直重量V和水平重量H(相对于oxy坐标)。由图c有H重量中将二阶微量略去。图a所示为一单盘悬臂转子。设转轴的挠曲平面xoy以角速度绕水平轴ox转动。圆盘除了随xoy平面一起转动外,一般而言,它还相对于挠曲平面还可以相对角速度r绕对称轴ox转动。图b表示圆盘的确定

22、角速度 和各重量之间的关系。为了计算圆盘对质心o的动量矩 ,把 分解为沿对称轴ox方向和盘直径方向两个重量,当为小角时有图4-15 单盘悬臂转子的回转效应化工机械强度与振动故当轴旋转时,水平重量H不变更大小和方向,而垂直重量V却因伴同xoy平面以角速度旋转而变更方向。依据动量矩定理:质点系对于某一固定点的动量矩矢量末端的速度,等于作用于质点系的外力对同一点的主矩。垂直重量V的末端速度即为V,得圆盘受到转轴的作用力矩因转轴所受的反作用力矩 就是回转力矩。见图4-16通常有可能发生以下两种运动状况:1.同步正进动 当圆盘的确定角速度垂直重量 和挠曲平面的转动角速度相等且方向相同时,称为同步正进动。

23、由该式得 。圆盘和挠曲平面以相同的角速度一起旋转。回转力矩对于薄圆盘,(4-39)图4-16 圆盘作用于转轴的回转力矩(4-40)化工机械强度与振动图4-16即为此种状况。可见在工程中最为常见的同步正进动中,圆盘的回转力矩通常是削减轴的弯曲程度,因而相当于增加轴的刚度,即提高了转子的临界转速。2.同步反进动当 和 相等但转动方向相反时,称为同步反进动。即即有回转力矩为同步反进动相当于降低了轴的刚度,即降低了转子的临界转速。但这种状况工程中很少发生。(4-41)化工机械强度与振动四、弹性支坐转子临界转速的计算由于轴承中油膜具有弹性,轴承坐和基础也有确定弹性。因此确定刚性的支坐不存在。把支坐作为弹

24、性支坐对待,即考虑支坐弹性以后,使整个转轴系统刚度下降,因此使转子临界转速降低。1.支坐刚度的计算支坐弹性可认为由两部分构成:轴承油膜弹性与轴承坐的弹性。油膜质量很小,可认为只有刚度,不计质量。轴承坐则既有刚度又有参振质量,见简图4-17a其中 为支坐处集中质量,分别为油膜刚度与轴承坐静刚度,m为轴承坐的参振质量现介绍系统的动刚度的概念。如上一无阻尼质量弹簧系统,受到强迫力Fsint作用后产生受迫振动,其振幅为图4-17 弹性支坐力模型化工机械强度与振动定义激振力幅F与振幅X之比为该系统的动刚度可见当 时,有 ,即外力为静力时,系统的动刚度便等于静刚度。而当 时,意味着受迫振动振幅X无限增大。

25、可见动力系统的刚度应用动刚度来表示,它与激振力的频率有关。如用轴承坐动刚度 来代替其静刚度和参振质量m,系统简图4-17a可用b表示,再求出与串连弹簧 等效的弹簧刚度 。即支坐的刚度,见c。对叶轮机械转子,油膜刚度值一般可取 。通常轴承坐静刚度 较油膜刚度 大得多,因此支坐刚度主要取决于轴承油膜刚度。但无论轴承油膜刚度还是基础动刚度的数值,都很难取准。(4-42)(4-43)化工机械强度与振动2.计算特点图4-19a为具有外伸端的简支梁,为弹性支坐。设i支坐的挠度为 ,刚度为 ,则支反力 为(b)为i支坐受力图,为i支坐点上的集中质量,于是 为i点上之惯性力,分别为i点左右截面上的剪力,应有

26、可用始端截面参数 表示。故在弹性支坐状况下,通过支坐后不再出现新参数,因此不必变换参数。这点是有异于刚性支坐的。这样在转子末端截面状态向量随意初参数 表示。依据末端边界条件,可得具有外伸端的弹性简支梁的频率方程图4-19(a)弹性支坐转子力学模型(b)支坐点分析(4-44)(4-45)化工机械强度与振动残矩为遇到弹性支点时,剪力递推应按4-45式五、影响转子临界转速因素的分析1.支坐弹性的影响由于支坐的弹性,使转子轴承系统的刚度下降,因此通常是降低转子的临界转速。现分析图4-20(a)所示单盘转子。并设A、B弹性支坐刚度相同。圆盘的竖直位移由两部分组成,一是轴的弯曲变形,一是支坐变形。设轴的弯

27、曲刚度为 ,支坐刚度为 ,则可将上述转子轴承系统简化为单质量弹簧系统。如图25b。其中m为圆盘质量和轴的折合质量之和。K为系统的相当刚度。按振动理论有:(4-46)(4-47)图4-20 单盘转子弹性支坐分析化工机械强度与振动弹性支承系统的固有频率可写为而 就是转子在刚性支坐条件下的固有频率,即刚之条件下的临界转速,以 表示,上式可写为从上式可看出,当 ,即刚支状况下,。在一般状况下 ,在上面的谈论中也得出同样的结论。进一步分析。可看出支坐弹性影响的大小,是取决于轴的刚度与支坐刚度值比值。当轴的刚度比支坐刚度大时,支坐弹性对临界转速的影响就明显;相反则不明显。特殊是当 后是这样。可见支坐弹性的

28、影响。并不单纯取决于支坐的刚度,还与转子本身刚度有关。同一轴承系统,对不同转子来说,对其临界转速的影响是不一样的。当支坐分别为刚性和弹性时,ALS-16000按压缩机低压缸和高压缸转子的一阶临界转速如下:即(4-48)化工机械强度与振动某二氧化碳升压循环机转子的一、二、三阶临界转速计算结果列于表2.可以看到,支坐弹性对高阶临界转速的影响要比低阶大。这是因为高阶振型节点数多,相当于轴的刚度增加,所以支坐弹性的影响增大。表1 支坐弹性对氨压缩机高、低压缸转子临界转速的影响表2 支坐弹性对某二氧化碳升压循环机转子各阶临界转速的影响化工机械强度与振动此时在 状况下,支坐总刚度 。由4-48式可看出,这

29、时随着支坐刚度的降低,转子的临界转速非但不下降,反而要提高。这就是所谓负刚度的状况。这时支坐的振动方向与转子的振动方向相反,相位差180,见图4-21.其中m代表转子质量,m为支坐的参振质量,其振动状况见图4-22。将这种支承称为挠性支坐。现分析一种支坐“负刚度”状况,由公式可看出支坐动刚度 与转轴转速有关,令为支坐(包括轴承坐及基础)的固有频率可见当 时,则对支坐负刚度的挠性支坐,其临界转速一般接近于刚性支坐时的值,因此在计算临界转速时,可不考虑支坐弹性的影响。图4-21 支座振动与转子振动反相图4-22 支座负刚度状况转子一阶振型化工机械强度与振动2.叶轮回转力矩的影响同步正进动时,叶轮回

30、转力矩为对一般较薄的叶轮,有 ,因此回转力矩的影响总是提高转子的临界转速。对于高阶临界转速及叶轮安装在悬臂端,回转力矩的影响都比较大,应予考虑。如某DH型双轴四级离心式压缩机的级转轴,结构如图4-23示,转轴两端悬臂都安装有叶轮,回转力矩的影响应计入。表3列出计入和不计入回转力矩状况下,一阶与二阶临界转速的计算结果。图4-23 某DH型离心式压缩机-级转子表3 叶轮回转力矩对某DH型离心式压缩机转子临界转速的影响化工机械强度与振动当叶轮较宽时,就可能出现,这时 。这样在同步正进动状况下,回转力矩的影响亦使转子临界转速降低。按三元流理论设计的叶轮一般较宽,有时会出现上述状况。表4列出DA930-

31、121离心式压缩机各级叶轮 值,其中一、二级叶轮便出现了 的状况。3.转子外伸段的影响转子总有确定长度的外伸段,过去在能量法计算转子临界转速时常被略去,事实上外伸段的影响是不小的,应当计入。外伸端的长度约为转子跨距的1/41/3,往往又装有齿轮联轴器,对转子振型曲线的影响是很明显的。表5为ALS-16000低压缸外伸端对临界转速的影响。由表可见外伸端使临界转速下降,尤其对二阶以上的影响更大。表4 DA930-121离心式压缩机低压缸五个叶轮的Jp-Jd值化工机械强度与振动4.轴向力的影响由于压差的作用,叶轮机械主轴都承受确定的轴向力。轴向拉力相当于增加了轴的弯曲刚度,导致主轴临界转速提高;轴向

32、压力则相反。对等截面简支轴而言,设轴向力T使固有频率变更 ,其增率为式中 为无轴向力时,主轴的固有频率,n是振型的阶次,L是跨距。如T为压力,则当压力过大时,要进一步考虑失稳问题。表5 外伸段的ALS-16000氨压缩机低压缸转子临界转速的影响(4-49)化工机械强度与振动5.叶轮紧配对临界转速的影响压缩机叶轮与主轴间常接受过盈协作。过盈协作增加了轴的抗弯刚度,使转子的临界转速提高。为了计入这种影响,可在计算主轴紧配段的惯性矩时接受轮毂的外径计算。6.轴系临界转速的计算大型透平压缩机组,通常是由几个缸串连而成,因此转子系统就是由各单缸转子通过联轴节所构成的一个轴系。在多缸串联状况下,各个缸的振

33、动互有影响,因此不能单纯只计算各个单缸转子的临界转速,必需按整个轴系来计算临界转速。但由于各缸主轴之间一般接受齿式联轴节。一般认为它只传递扭矩和剪力,而不能传递弯矩,即将齿式联轴节作为中间铰处理。在接受这种联轴节的状况下,整个轴系的临界转速,就是各单缸转子的临界转速按大小依次排列而成。表6为某油田空气压缩机高、中、低压缸构成的轴系,轴系及各单缸的临界转速计算计算结果(刚支时)化工机械强度与振动7.轴承油膜阻尼的影响透平式压缩机中轴承术语高速轻载轴承,油膜阻尼是一个很重要的因素,它对转子振动影响很大。但是由于目前对油膜阻尼还缺乏精确的数据资料,所以一般计算临界转速时,都没有计入油膜阻尼的影响。油膜阻尼的存在会提高临界转速值,所以在计算时,可以接受适当增大油膜刚度的方法来弥补油膜阻尼的忽视。油膜阻尼对转子振动的影响,不单表现在临界转速下,更重要的是降低振动幅度。事实证明,阻尼的存在将大大降低共振振幅。假如有适当阻尼,甚至可使转子不出现共振峰值。目前阻尼已成为用来限制转子的临界转速时振动的一个重要手段,在阻尼适当,并且转子经过精细的动平衡,转轴就可以在临界转速旁边平安运转。表6 油田气压缩机单缸及轴系临界转速

展开阅读全文
相关资源
相关搜索

当前位置:首页 > pptx模板 > 商业计划书

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁