自然地理学-第三章-大气圈与气候系统分解优秀PPT.ppt

上传人:ylj18****41534 文档编号:86817374 上传时间:2023-04-15 格式:PPT 页数:63 大小:2.21MB
返回 下载 相关 举报
自然地理学-第三章-大气圈与气候系统分解优秀PPT.ppt_第1页
第1页 / 共63页
自然地理学-第三章-大气圈与气候系统分解优秀PPT.ppt_第2页
第2页 / 共63页
点击查看更多>>
资源描述

《自然地理学-第三章-大气圈与气候系统分解优秀PPT.ppt》由会员分享,可在线阅读,更多相关《自然地理学-第三章-大气圈与气候系统分解优秀PPT.ppt(63页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第三章 大气圈与气候系统大气的组成和热能大气的水分和降水大气运动和天气系统气候的形成气候变更大气圈与气候系统 连续包围地球的气态物质称为大气,大气是自然环境的重要组成部分和最活跃的因素,在地理环境和能量转化中充当着特别重要的角色,大气层中天气系统的生成与消亡,以及发展和运动,是全球气候的基础。大气层爱护着生物免受辐射,还为动植物维持生命供应着须要。第一节 大气的组成和热能一、大气的成分 地球大气是多种物质的混合物,由干洁空气、水汽、悬浮尘粒或杂质组成。定常成分:N2 O2 Ar 和微量惰性气体 Ne Kr Xe He 等 可变成分(气体在大气中的比例随时间地点而变):水汽 二氧化碳 臭氧 碳、

2、硫、氮的化合物等(一)干洁空气的成分及其性质 通常把除水汽、液体和固体杂质外的整个混合气体称为干洁空气。简称干空气。它是地球大气得主体,主要成分是氮、氧、氩、二氧化碳等,此外还有少量氢、氖、氪、氙、臭氧等稀有气体。1 氮和氧 N 2约占大气容积的78。常温下,N 2的化学性质不活泼,不能被植物干脆利用只能通过植物的根瘤菌,部分固定于土壤中。N 2对太阳辐射远紫外区0.030.13 具有选择性吸取。02占地球大气质量的23,按体积比占21。除了游离态外,氧还以硅酸盐、氧化物、水等化合物形式存在。2 二氧化碳 只占大气容积的0.03,多集中在20km高度以下,主要由有机物燃烧、腐烂和生物呼吸过程产

3、生。二氧化碳对太阳短波吸取很少,但能猛烈吸取地表长波辐射,致使从地表辐射的热量不易散失到太空。对地球有保温作用,但近年来随着工业的发展和人口的增长,全球二氧化碳含量逐年增加,变更了大气热平衡,导致地面和低层大气平均温度上升,引起严峻的气候问题。3 臭氧 主要分布在1040km的高度处,极大值在2025km旁边,称为臭氧层。臭氧虽在大气中的含量很少,但具有猛烈吸取紫外线的实力。探讨表明,人们大量运用氮肥以及作冷冻剂和除臭剂运用的碳氟化合物(氟利昂)所造成的污染是平流层的臭氧遭到破坏。臭氧层的破坏能引起一系列不利于人类的气候生物效应,因而受到广泛关注。(二)水汽(三)固、液体杂质 大气悬浮固体杂质

4、和液体微粒,也可称为气溶胶粒子。除由水汽变成的水滴和冰晶外,主要是大气尘埃和其他杂质。大的水溶性气溶胶粒子最易使水气凝合,是成云致雨的重要条件。气溶胶粒子能吸取部分太阳辐射并散射辐射,从而变更大气透亮度。它对太阳辐射的影响和增大散射辐射、大气长波逆辐射,都有可能破坏地球的辐射平衡。二、大气的结构(一)大气质量 1、大气上界 大气按其物理性质来说是不匀整的,特殊是在铅直方向变更急剧。在很高的高度上空气特别淡薄,气体分子之间的距离很大。在理论上,当压力为零或接近于零的高度为大气顶层,但这种高度不行能出现。因为在很高的高度渐渐到达星际空间,不存在完全没有空气分子的地方。气象学家认为,只要发生在最大高

5、度上的某种现象与地面气候有关,便可定义这个高度为大气上界。因此,过去曾把极光出现的最大高度(1200km)定为大气上界。物理学家、化学家则从大气物理、化学特征动身,认为大气上界至少高于1200km,但不超过3200km,因为在这个高度上离心力以超过重力,大气密度接近星际气体密度。所以在高层大气物理学中,常把大气上界定在3000km。2 大气质量 大气高度虽然不易确定,大气质量却可以从理论上求得。假定大气是均质的,则大气高度约为8000m,整个大气柱的质量为 m0p0 H1.1251038105 1013.3g/cm2 p0为标准状况下(T0oC,气压为 1013.25hPa)大气密度。(二)大

6、气压力 1 气压 定义从观测高度到大气上界上单位面积上(横截面积1cm2)铅直空气柱的重量为大气压强,简称气压。地面的气压值在9801040hPa之间变动,平均为1013hPa。气压有日变更和年变更,还有非周期变更。气压非周期变更常与大气环流和和天气系统有关,且变更幅度大。2 气压的垂直分布 气压大小取决于所在水平面的大气质量,随高度的上升,大气柱质量削减,所以气压随高度上升而降低。其一般状况如图所示:气压随高度的实际变更与气温顺气压条件有关。再气压相同条件下,气柱温度愈高,单位气压高度差 愈大,气压垂直梯度愈小;在相同气温下,气压愈高单 位气压高度差愈大,气压垂直梯度愈大。三、大气的分层 依

7、据分子组成,大气可分为两层,即均质层和非均质层。均质层为从地表至85km高度的大气层,除水汽有较大变动外,其组成较均一。85km高度以上为非均质层,其中又可分为氮层、原子氧层、氦层和氢层按大气化学核物理性质,非均质层可分为光化层和离子层。光化层具有分子、原子和自由基组成的化学物质,其中包括约在20km高度处03浓度最大处的臭氧层。离子层包含大量离子。又反射无线电波实力。从下而上,又分为D、E、F1、F2和G层。在气象学中依据温度和运动状况,将大气圈分为五层对流层平流层中间层暖层散逸层大气的垂直分布(四)、标准大气 人们依据高空探测数据和理论,规定了一种特性随高度平均分布的大气模式,称为“标准大

8、气”或“参考大气”。标准大气模式假定空气是干燥的,在86km以下是匀整混合物,平均摩尔质量为28.964kg/mol,且处于静力学平衡和水平成层分布。在给定温度,高度廓线及边界条件后,通过对静力学方程和状态方程求积分,就得到压力和密度值。三、大气的热能 地球气候系统的能源主要是太阳辐射,它从根本确定地球、大气的热状况,从而支配其他的能量传输过程。地球气候系统内部也进行着辐射能量交换。因此,须要探讨太阳、地球及大气的辐射能量交换和其他地气系统的辐射平衡(一)太阳辐射 太阳是离地球最近的一个恒星,其表面温度约为6000K,内部温度更高,所以太阳不停地向外辐射巨大的能量。太阳辐射能主要是波长在0.4

9、0.76 m的可见光,约为总能量的50;其次是波长大于0.76 m的红外辐射,约占总辐射能的43;波长小于0.4 m的紫外辐射约占7。相对于地球来说,太阳辐射的波长较短,故称太阳辐射为短波辐射。表示太阳辐射能强弱的物理量,即单位时间内垂直投射在单位面积上的太阳辐射能,称为太阳辐射强度。在日地平均距离(1.496108)上,大气顶界垂直于太阳光线的单位面积上每分钟接受的太阳辐射,称为太阳常数。大气上界太阳辐射能量曲线及到达地表的典型能量曲线 太阳辐射经过大气减弱后到达地面有两部分:一是干脆辐射,二是经大气散射后到达地面的部分散射辐射,两者之和即为太阳辐射总量,称为总辐射。有明显的日变更和年变更

10、受云的影响(纬度变更)到达地面的总辐射一部分被地面吸取转变成热能,一部分被反射。反射部分占辐射量的百分比,称为反射率。反射率随地面性质和状态不同二者有很大差别不同性质地面对太阳的反射率(二)大气能量及其保温效应 大气本身对太阳辐射干脆吸取很少,而水、陆植被等下垫面却能吸取太阳辐射,并经潜热和感热转化供应大气。大气获得能量的具体结构为:1 对太阳辐射的干脆吸取 大气中吸取太阳辐射的物质主要是臭氧、水汽和液态水。2 对地面辐射的吸取 地表吸取了到达大气上界太阳辐射能的50,变成热能,温度上升,而后以大于3 m的长波(红外)向外辐射。这种辐射能量的7595被大气吸取,只有少部分波长为8.512 m的

11、辐射能通过“大气窗”逸回宇宙空间。3 潜热输送 海面和陆面的水分蒸发使地面热量得以输送到大气层中。一方面水汽凝合成雨滴或雪时,放出潜热给空气;另一方面雨滴或雪降到地面不久又被蒸发,这个过程交替进行。全球表面年平均潜热输送约为2760MJ/m2,占辐射平衡的84,可见,地气间能量交换主要是通过潜热输送完成的。4 感热输送 大气获得热能后依据本身温度向外辐射,称为大气辐射。其中一部特别逸到宇宙空间,一部分向下投向地面,即为大气逆辐射。大气逆辐射的存在使地面实际损失略少于长波辐射放出的能量,地面得以保持确定的暖和程度。这种保温作用,通常称为“温室效应”据计算,假如没有大气,地面平均温度将是18oC,

12、而不是现在的150C。(三)地气系统的辐射平衡 辐射平衡有年变更和日变更。在一日内白天收入的太阳辐射超过支出的长波辐射,辐射平衡为正值,夜间为负值。正转负和负转正的时刻分别在日没前与日出后1小时。在一年内,北半球夏季辐射平衡因太阳辐射增多而加大;冬季则相反,甚至出现负值。纬度愈高,辐射平衡保持正值的月份愈少。不同纬度辐射差额的变更四、气温 气温是大气热力状况的数量量度。空气中分子运动的平均动能与确定温度T成正比。气温的周期性变更 日变更 年变更 气温的水平分布 气温的垂直分布其次节 大气水分和降水大气湿度蒸发和凝合水汽的凝合现象大气降水一、大气的湿度(一)湿度的概念和表示方法 大气从海洋、湖泊

13、、河流以及潮湿土壤的蒸发或植物的蒸腾作用中获得水分。水分进入大气后,通过分子扩散和气流的的传递而散布于大气中,使之具有不同的潮湿度。常用多个湿度参量表示水气含量。1 水汽压和饱和水汽压 大气压力是大气中各中气体压力的总和。大气中水汽所产生的那部分压力叫水汽压(e)地面的水汽压随纬度的上升而减小。赤道平均26hPa,350N约为13hPa,650N约为4hPa极低旁边约为12hPa。水汽压随高度的变更阅历公式 ez=e010 bz不同温度条件下水面上的饱和水汽压/hPa 2 确定湿度和相对湿度 单位容积空气所含的水气质量通常以g/cm3表示,称为确定湿度(a)或水汽密度。确定湿度不能干脆测定,但

14、可间接算出。a289e/T(g/m3)式中,e为水汽压(mm);T为确定温度。大气的实际水汽压e与同温度饱和水汽压E之比,称为相对湿度(f),用百分数表示。fe/T100 由于E随温度而变,所以相对湿度取决于e和T,其中T往往起主导作用。当e确定时,温度降低则相对湿度增大;温度上升相对湿度减小。夜间多云、雾、霜、露,天气转冷时简洁产生云等都是相对湿度增大的结果3 露点温度 确定质量的湿空气,若气压保持不变,而令其冷却,则饱和水汽压E随温度降低而减小。当 Ee时,空气达到饱和。湿空气等压降温达到饱和时的温度就是露点温度Td,简称露点。(二)湿度的变更与分布 相对湿度能够干脆反映空气距饱和的程度,

15、在气候资料分析中应用广泛。相对湿度日变更通常与气温日变更相反。相对湿度分布随距海远近与纬度凹凸而有不同。二、蒸发和凝合 蒸发面上出现蒸发还是凝合取决于实际水汽压于饱和水汽压的关系。当eE,出现蒸发;eE,则出现凝合。饱和水汽压和实际水汽压都是不断变更的通常饱和水汽压变更更为明显和快速。(一)蒸发及其影响因素 1 影响蒸发的因素 其影响因素主要包括蒸发面的温度、性质、性状、空气湿度、风等。2 蒸发量 实际工作中,一般以水层厚度(mm)表示蒸发速度,称为蒸发量。蒸发量的变更与气温变更一样,一日内,午后蒸发量最大;日出前蒸发量最小。一年内,夏季蒸发量大,冬季小。蒸发量的空间变更受气温、海陆分布、降水

16、量等因素的影响。北半球大陆各纬度平均蒸发量(二)蒸发和凝合的条件 凝合是发生在f100%(eE)过饱和状况下的与蒸发相反的过程,在地面和大气中均可以产生。大气中的水汽发生凝合,需具备确定的条件,既要使水汽达到饱和或过饱和,还需有凝合核。大气降温过程主要有四种:绝热冷却、辐射冷却、平流冷却以及混合冷却 凝合核主要起的作用:一是对水汽的吸附作用;二是使形成的粒滴比单纯水分子形成的粒滴大,有利于水汽接着凝合。三、水汽的凝合现象(一)地表面的凝合现象 1 霜与露 日没后,地面及近地面层空气冷却,温度降低。当气温降到露点一下时,水汽即凝附于地面或地面物体上。如温度在00C以上,水汽凝合为液态,称为露;温

17、度在00C以下,水汽凝合为固态,称为霜。霜常见于冬季,露见于其他季节,以夏季为最多。2 雾淞和雨淞 雾淞是一种白色固体凝合物,由过冷雾滴附着于地面物体或树枝快速冻结而成,俗称“树挂”。多出现于寒冷而湿度高的天气条件下。雨淞是形成在地面或地物的迎风面上的,透亮的或毛玻璃状的紧密冰层,俗称“冰棱”。多半在温度为 0 60C时,由过冷却雨、毛毛雨接触物体表面形成;或是经过长期寒冷后,雨滴着陆在物体表面冻结而成。(二)大气中的凝合现象1、雾 雾是漂移在近地面层的乳白色微小水滴或冰晶。依据不同成因,雾可分为辐射雾、平流雾、蒸汽雾、上坡雾和锋面雾。2、云 云是高空水气凝合现象。空气对流、锋面抬升、地形抬升

18、等作用使空气上升到凝合高度,就会形成云。云有各种各样的外貌特征。依据云的形态、云底高度及形成云的上升运动的特点可将云分为以下几类积状云的形成层状云的形成波状云的形成四、大气降水(一)降水的形成 从云层中着陆到地面的液态水或固态水,称为降水。降水是云中水滴或冰晶增大的结果。从雨滴到形成降水需具备两个基本条件:一是雨滴下降速度超过气流上升速度;二是雨滴从云中着陆到地面前不被完全蒸发。降水的形成,必需经验云滴增大为雨滴、雪花及其他降水物的过程。云滴增长主要有两个过程:云滴的凝合(凝华)增长 云滴的冲并增长1 云滴的凝合(凝华)增长云滴的凝合(凝华)增长 在云的发展阶段,云体上升绝热冷在云的发展阶段,

19、云体上升绝热冷却,或不断有水汽输却,或不断有水汽输入,使云滴四周的实际水汽压大于其饱入,使云滴四周的实际水汽压大于其饱和水汽压云滴就会和水汽压云滴就会因水汽凝合或凝华而渐渐增大。当水滴因水汽凝合或凝华而渐渐增大。当水滴和冰晶共存时在温和冰晶共存时在温度相同条件下,冰面水汽压小于水面水度相同条件下,冰面水汽压小于水面水汽压,水滴将不断汽压,水滴将不断蒸发变小,而冰晶则不断凝华增大这种蒸发变小,而冰晶则不断凝华增大这种过程称为冰晶效过程称为冰晶效应。应。2 云滴的冲并增长云滴的冲并增长 云滴大小不同,相应具有不同的运动速度。云滴下降时,个体大的云滴落得快,个体小的慢,于是大云滴“追上”小云滴,碰撞

20、合并成为更大的云滴。冲并增长示意图(二)降水的类型 依据降水形成缘由(主要是气流上升特点),可分为四个基本类型:1 对流雨 暖季空气湿度较大,近地面气层猛烈受热,引起对流而形成的降水称为对流雨。赤道全年以对流雨为主。我国西南夏季多对流雨。2 地形雨 暖湿空气前进途中遇到较高山地阻挡被迫抬升,绝热冷却,在达到凝合高度时便产生降水。因此,山的迎风坡常成为多雨中心;背风坡因水汽早已凝合着陆,且下沉增温,将发生焚风效应,降水很少,形成雨影区。3 锋面雨 两种物理性质不同的气团相遇,暖湿空气沿交界面上升,绝热冷却,达到凝合高度便产生云雨。温带地区锋面雨占主要地位。4 台风雨 台风是产生在热带海洋上的一种

21、空气漩涡。台风中有大量暖空气上升,可产生强度极大的降水。(三)(三)降水的时间变更降水的时间变更 1 降水强度降水强度 单位时间内的降水单位时间内的降水量,称为降水强度。气象部门为确定确量,称为降水强度。气象部门为确定确定时间内降水的数量特征,并用以预报定时间内降水的数量特征,并用以预报将来降水数量变更趋势,将降水强度划将来降水数量变更趋势,将降水强度划分为若干等级:分为若干等级:2.降水的日变更 一天内的降水变更,在很大程度受地方条件限制,可大致分为两个类型:(1)大陆型 特点是一天有两个最大值,分别出现在午后和早晨;两个最小值,分别出现在夜间和午前。(2)海洋型 特点是一天只有一个最大值,

22、出现在早晨,最小值出现在午后。3.降水的季节变更 降水季节变更因纬度,海陆位置、大气环流等因素影响而不同。全球降水的年类型大致可分为以下几类:(1)赤道型:全年多雨,其中有两个高值和两个低值时期。春、秋分之后降水量最多;冬、夏至之后,降水量出现低值。这种类型分布在南北纬100以内的地区。(2)热带型:位于赤道型南北两侧。由于太阳在天顶的时间不像在赤道上间隔相等,随纬度的增加,两段最多降水量时间渐渐接近,至回来线旁边合并为一个。(3)副热带型:副热带全年降水只有一个最高值,一个最低值。大陆东岸降水量集中于夏季(季风型),大陆西岸则冬季多雨(地中海型)。(4)温带及高纬型:内陆及东海岸以夏季对流雨

23、为主,西海岸则以秋冬气旋雨为主。(四)(四)降水量的地理分布降水量的地理分布 降水量空间分布受纬度、海陆位置、大气环降水量空间分布受纬度、海陆位置、大气环流、天气系统、地形等多种因素制约,降水的分流、天气系统、地形等多种因素制约,降水的分布存在纬度带状分布的特点。全球可划分为四个布存在纬度带状分布的特点。全球可划分为四个降水带:降水带:1 赤道多雨带赤道多雨带 赤道及其两侧是全球降水量最多赤道及其两侧是全球降水量最多的地带。年降水量至少的地带。年降水量至少1500mm,一般为,一般为20003000mm 2 南北纬南北纬150300少雨带少雨带 这一纬度带受副热带这一纬度带受副热带高压限制,以下沉气流为主。是全球降水稀有带。高压限制,以下沉气流为主。是全球降水稀有带。大陆西岸和内部一般不足大陆西岸和内部一般不足500mm,不少地方只有,不少地方只有100300mm。3 中纬多雨带中纬多雨带 年降水量一般为年降水量一般为500100mm。4高纬少雨带高纬少雨带 本带因纬度高,全年气温低,蒸发本带因纬度高,全年气温低,蒸发微弱,大气中所含水汽量较少,故年降水量一般微弱,大气中所含水汽量较少,故年降水量一般不超过不超过300mm。一地的年降水量反映该地的水分收入状况,蒸发量反映水分支出状况,某地区是潮湿还是干旱,取决于该地降水量P与蒸发量E的对比关系。潮湿系数K=P/E

展开阅读全文
相关资源
相关搜索

当前位置:首页 > pptx模板 > 商业计划书

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁