《β一SnS/GaSe heterostructure:a promising solar-driven photocatalyst with low carrier recombination for overall water splitting.docx》由会员分享,可在线阅读,更多相关《β一SnS/GaSe heterostructure:a promising solar-driven photocatalyst with low carrier recombination for overall water splitting.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、ROYAL SOCIETY_OF CHEMISTRYJournal ofMaterials Chemistry APAPER9sz I -6 & 0Z/2/S co ouq8I JO A=SJoun UEnal Aq poPEOcMoa zzozhEnupf G - uo puqs二q_ld,11 Check for updatesCite this: J. Mater. Chern. A, 2022,10,b-SnS/GaSe heterostructure: a promising driven photocatalyst with low carrier3443 recombinatio
2、n for overall water splittingtsolar-Jie Meng/Jiajun Wang, *1 2Jianing Wang,aQunxiang Li *aand Jinlong Yang aVarious two-dimensional (2D) materials have been well investigated as promising high-effi ciency photocatalysts for solar-driven water splitting, while the high carrier recombination greatly h
3、inders their practical application. One effective route to solve this issue is to rationally design type-ll heterostructures with low carrier recombination based on 2D materials. Here, by performing extensive density functional theory calculations combined with non-adiabatic molecular dynamics simul
4、ations, we propose a b- SnS/ GaSe heterostructure through constructing group-ill and -IV monochalcogenides as a potential type-ll photocatalyst for overall water splitting. Our results clearly show that the interlayer interaction between the b-SnS and GaSe monolayers in the heterostructure creates a
5、 relatively large built-in electric field and strong non-adiabatic coupling, which accelerate the separation of photogenerated carriers within subpicoseconds. At the same time, the photogenerated carrier recombination occurs over a relatively long time scale, implying that the separated electrons an
6、d holes with strong redox capacity could effectivelyReceived 24th November 2021Accepted 12th January 2022 participate in water oxidation and reduction reactions on the GaSe and b-SnS monolayers, respectively.Meanwhile, the b-SnS/GaSe heterostructure exhibits strongoptical absorption in the visiblean
7、dDOI: 10.1039/dl ta 10074b ultraviolet ranges of the solar spectrum, and the sharp exciton peaks in visible-light regions are known as rsc.li/materials-a the interlayer, intralayer, or mixed-type bright excitons.1 IntroductionIn facing the ever-increasing global energy demand and diminishing fossil
8、fuel reserves, conventional energy sources can no longer meet the needs of human society. Hydrogen is regarded as a superior alternative energy source to fossil fuels because of its large energy storage capacity, environmental sustainability, and cost-effectiveness.1 Photocatalytic water splitting i
9、nto H2 is a potential approach for converting solar radiation into a clean chemical energy source.2-5 To complete efficient solar-to-hydrogen conversion, the semiconductor photocatalyst should go through the following steps: the photocatalyst utilizes photons with energy greater than the band gap to
10、 excite electrons from the valence bands (VBs) to the conduction bands (CBs), resulting in electron-hole pairs. Then, the photogenerated electrons move to the reaction sites on the surface, whereby they trigger the hydrogen evolution reaction (HER) to produce H2, while the holes participate in the o
11、xygen evolution reaction (OER) to produce O2. The photocatalyst must follow certain conditions to ensure that the two half-reactions occur simultaneously: (i) a suitable band gap governsthe light harvesting; (ii) ideal band positions ensure straddling of the water redox potentials; (iii) the photoge
12、nerated electrons and holes have sufficient driving force to overcome the energetic barrier of water splitting, namely, the energy differences between the photocatalyst conduction band minimum (valence band maximum) positions and the reduction (oxidation) potentials should be sufficiently large to e
13、nsure the strong oxidizing (reducing) ability.67However, there are only a few economic materials that meet all these requirements for solar water splitting. Over the past few decades, based on metal oxides,89 inorganic perovskites, 3 and graphitic carbon nitride,11 various photocatalysts have exhibi
14、ted either too large band gaps to harvest sunlight or unmatched band positions that are incapable of overall water splitting.89 In this regard, searchingfor high-efficiency photocatalysts is a preliminary task both in theoretical and experimental aspects.Since the successful isolation of graphene in
15、 2004,12 many two- dimensional (2D) materials, such as black phosphorus,13 tellurene,14 hexagonal boron nitride,15 transition-metal dichalcogenides,16 and the Janus structures,17 have been well investigated due to their uniqueView Article Onlin eView Jouma I | View Issu e18192021222324252627282930K.
16、 Zhang, B. Jin, C. Park, Y. Cho, X. Song, X. Shi, S. Zhang, W. Kim, H. Zeng and J. H. Park, Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts, Nat. Commun., 2019, 10, 1-10.G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand and
17、 B. Urbaszek, Colloquium: Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys., 2018, 90, 021001.H. Ma, M. Wei, F. Jin, T. Chen and Y. Ma, Two-Dimensional COF with Rather Low Exciton Binding Energies Comparable to 3D Inorganic Semiconductors in the Visible Range for Water Sp
18、litting, J. Phys. Chem. C, 2019, 123, 24626-24633.I. J. Late, B. Liu, J. Luo, A. Yan, H. S. S. R. Matte, M. Grayson, C. N. R. Rao and V. P. Dravid, GaS and GaSe ultrathin layer transistors, Adv. Mater., 2012, 24, 3549-3554.M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Naja团,R. Oropesa-Nunez,B. M
19、artm-Garcia, D. Bouvsa,D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo and F. Bonaccorso, Solution-Processed GaSe Nano0ake-Based Films for Photoelectrochemical Water Splitting and Photoelectrochemical - Type Photodetectors, Adv. Funct. Mater., 2020, 30, 1909572.X. Li, J. Dong, J. C. Idrobo, A.
20、 A. Puretzky, C. M. Rouleau, D. B. Geohegan, F. Ding and K. Xiao, Edge-controlled growth and Etching of two-dimensional GaSe monolayers, J. Am. Chem. Soc., 2017, 139, 482-491.M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira and R. Huber, Real-time observation of int
21、erfering crystal electrons in highharmonic generation, Nature, 2015,523, 572-575.D. J. Terry, V. Zolyomi, M. Hamer, A. V. Tyurnina,D. G.Hopkinson,A.M. Rakowski, S. J.Magorrian,Clark, Y. M. Andreev, O. Kazakova, K. Novoselov, S. J. Haigh, V. I. Fala-rko and R. Gorbachev, Infrared-toviolet tunable opt
22、ical activity in atomic Mms of GaSe, InSe, and their heterostructures, 2D Mater., 2018, 5,041009.T. Afaneh, A. Fryer, Y. Xin, R. H. Hyde, N. Kapuruge and H. R. Gutierrez, Large-Area Growth and Stability of Monolayer Gallium Monochalcogenides for Optoelectronic Devices, ACS Appl. Nano Mater., 2020, 3
23、, 7879-7887.Y. Cui, L. Peng, L. Sun, Q. Qian and Y. Huang, Twodimensional few-layer group-III metal monochalcogenides as effective photocatalysts for overall water splitting in the visible range, J. Mater. Chem. A, 2018, 6, 22768-22777.H. L. Zhuang and R. G. Hennig, Single-layer group-III monochalco
24、genide photocatalysts for water splitting, Chem. Mater., 2013, 25, 3232-3238.T. Hu and J. Dong, Two new phases of monolayer group-IV monochalcogenides and their piezoelectric properties, Phys. Chem. Chem. Phys., 2016, 18, 32514-32520.S. P. Poudel and S. Barraza-Lopez, Metastable piezoelectric group-
25、IV monochalcogenide monolayers with a buckledView Article OnlineJournal of Materials Chemistry A Paper honeycomb structure, Phys. Rev. B: Condens. Matter Mater. Phys., 2021, 103, 24107.31 Y. Ji, M. Yang, H. Dong, T. Hou, L. Wang and Y. Li, Twodimensional germanium monochalcogenide photocatalyst for
26、water splitting under ultraviolet, visible to near-infrared light, Nanoscale, 2017, 9, 86081C8615.32 X. Ma, X. Wu, H. Wang and Y. Wang, A Janus MoSSe monolayer: A potential wide solar-spectrum water-splitting photocatalyst with a low carrier recombination rate, J. Mater. Chem. A, 2018, 6, 2295-2301.
27、33 G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169-11186.34 P. E. Blochl, Projector augmented-wave method, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, 50,
28、 17953-17979.35 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, 3865- 3868.36 H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B: Condens. Matter Mater. Phys., 1976, 13,5188-5192.37 S. Grimm
29、e, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 2006, 27, 1787-1799.38 S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi, Phonons and related crystal properties from densityfunctional perturbation theory, Rev. Mod. Phys., 20
30、01, 73, 515-562.39 J. Heyd, G. E. Scuseria and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys., 2003,118, 8207-8215.40 G. J. Martyna, M. L. Klein and M. Tuckerman, Nose-Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys., 1992, 97, 263
31、5-2643.41 M. RohlEng and S. G. Louie, Electron-hole excitations and optical spectra from Erst principles, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 62, 4927-4944.42 M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, P
32、hys. Rev. B: Condens. Matter Mater. Phys., 1986, 34, 5390-5413.43 J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen and S. G. Louie, BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures, Comput
33、. Phys. Commun., 2012, 183, 1269- 1289.44 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi,R. Gebauer, U. Gerstmann,C. Gougoussis, A.Kokalj,3452 | J. Mater. Chem. A, 2022,10,
34、 3443-3453 This journal is The Royal Society of Chemistry 202245464748495051525354555657View Article OnlineM.Lazzeri, L.Martin-Samos, N.Marzari, F.Mauri,R.Mazzarello,S. Paolini,A.Pasquarello,L. Paulatto,C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcov
35、itch, QUANTUM ESPRESSO: a modular and open-source soBware project for quantum simulations of materials, J. Phys.: Condens. Matter, 2009, 21, 395502.F. H. da Jornada, D. Y. Qiu and S. G. Louie, Nonunifbrm sampling schemes of the Brillouin zone for many-electron perturbationtheory calculations in redu
36、ced dimensionality, Phys. Rev. B: Condens. Matter Mater. Phys., 2017, 95, 35109.Y. Jing, Z. Zhou, J. Zhang, C. Huang, Y. Li and F. Wang, SnP2s6 monolayer: A promising 2D semiconductor for photocatalytic water splitting, Phys. Chem. Chem. Phys., 2019, 21,21064-21069.Y. Jing, Z. Zhou, W. Geng, X. Zhu
37、and T. Heine, 2 D Honeycomb- Kagome Polymer Tandem as Effective MetalFree Photocatalysts for Water Splitting, Adv. Mater., 2021, 33, 2008645.Z. Zhou, M. A. Springer, W. Geng, X. Zhu, T. Li, M. Li, Y. Jing and T. Heine, Rational Design of Two-Dimensional Binary Polymers from Heterotriangulenes for Ph
38、otocatalytic Water Splitting, J. Phys. Chem. Lett., 2021, 12, 8134-8140.A. Rawat, R. Ahammed, D. Dimple, N. Jena, M. K. Mohanta and A. De Sarkar, Solar Energy Harvesting in Type-II van der Waals Heterostructures of Semiconducting Group III Monochalcogenide Monolayers, J. Phys. Chem. C, 2019, 123, 12
39、666-12675.L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. Kim, R. V Gorbachev, T. Georgiou, S. V Morozov, a N. Grigorenko, a K. Geim, C. Casiraghi, a H. C. Neto and K. S. Novoselov, Strong Light-Matter Interactions Thin Films, Science, 2013, 340, 1311-1315.G. Antoniu
40、s, D. Y. Qiu and S. G. Louie, Orbital Symmetry and the Optical Response of Single-Layer MXMonochalcogenides, Nano Lett., 2018, 18, 1925-1929.H. Arora and A. Erbe, Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe, InfbMat, 2021, 3, 662-693.T. Sohier, M. Gibertini a
41、nd N. Marzari, Pro fling novel highconductivity 2D semiconductors, 2D Mater., 2020, 8, 015025.C. Si, Z. Lin, J. Zhou and Z. Sun, Controllable Schottky barrier in GaSe/graphene heterostructure: The role of interface dipole, 2D Mater., 2017, 4,015027.J. Chen, X. He, B. Sa, J. Zhou, C. Xu, C. Wen and Z
42、. Sun, III-VI van der Waals heterostructures for sustainable energy related applications, Nanoscale, 2019,11, 6431-6444.K. Wang, Z. Guan, J. Huang, Q. Li and J. Yang, Enhanced photocatalytic mechanism fbr the hybrid gCN”MoSz nanocomposite, J. Mater. Chem. A, 2014, 2, 7960-7966.Q. Peng, Z. Guo, B. Sa
43、, J. Zhou and Z. Sun, New gallium chalcogenides/arsenene van der Waals heterostructures promisingPaper Journal of Materials Chemistry A for photocatalytic water splitting, Int. J. Hydrogen Energy, 2018, 43,15995-16004.58 A. Varghese, D. Saha, K. Thakar, V. Jindal, S. Ghosh, N. V. Mcdhekar, S. Ghosh
44、and S. Lodha, Near-Direct Bandgap WSe2/ReS? Type-II pn Heterojunction for Enhanced Ultrafast Photodetection and High-Performance Photovoltaics, Nano Lett., 2020, 20, 1707-1717.59 X. Li, Z. Li and J. Yang, Proposed photosynthesis method for producing hydrogen from dissociated water molecules using in
45、cident near-infrared light, Phys. Rev. Lett., 2014, 112, 018301.60 Z. Zhang and J. T. Yates, Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces, Chem. Rev., 2012, 112, 5520-5551.61 C. Xu, P. Ravi Anusuyadevi, C. Aymonier, R. Luque and S. Marre, Nanostructur
46、ed materials fbr photocatalysis, Chem. Soc. Rev., 2019, 48, 3868-3902.62 Y. Chen, T. Shi, P. Liu, X. Ma, L. Shui, C. Shang, Z. Chen, X. Wang, K. Kempa and G. Zhou, Insights into the mechanism of the enhanced visible-light photocatalytic activity of black phosphorus/BiVO4 heterostructure: A Hrstprinc
47、iples study, J. Mater. Chem. A, 2018, 6, 19167-19175.63 M. Zhu, Z. Sun, M. Fujitsuka and T. Majima, Z-Scheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/Bismuth Vanadate Using Visible Light, Angew. Chem., Int. Ed., 2018, 57, 2160-2164.64 R. Long and O. V. Prezhdo, Quan
48、tum Coherence Facilitates Efficient Charge Separation at a MoSz/MoSez van der Waals Junction, Nano Lett., 2016, 16, 1996-2003.65 Y. Liang, J. Li, H. Jin, B. Huang and Y. Dai, Photoexcitation Dynamics in Janus-MoSSe/WSe2 Heterobilayers: Ab Initio Time- Domain Study, J. Phys. Chem. Lett., 2018, 9, 279
49、7-2802.66 X. Niu, X. Bai, Z. Zhou and J. Wang, Rational Design and Characterization of Direct Z-Scheme Photocatalyst for Overall Water Splitting from Excited State Dynamics Simulations, ACS Catal., 2020, 10, 1976-1983.67 S. Fu, I. Fosse, X. Jia, J. Xu, X. Yu, H. Zhang, W. Zheng,S. Krasel, Z. Chen, Z. M. Wang, K. Tielrooij, M. Bonn, A. J. Houtepen and H. I. Wang, Long-lived