《口服缓释制剂教学教材.doc》由会员分享,可在线阅读,更多相关《口服缓释制剂教学教材.doc(47页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Good is good, but better carries it.精益求精,善益求善。口服缓释制剂-口服缓控释给药系统的研究进展黄桂华缓控释给药系统的研究始于20世纪50年代,1965年开始有文献发表,70年代被医学界认可,此后取得了很大突破,上市药物品种和制剂类型逐渐增多。在释放系统中研究最多、发展最快的是口服缓释、控释制剂,是近代国内外医药工业发展的重要方向,由于开发周期短,投入较少,经济风险低,且因产品技术含量增加而附加价值显著提高等优点而被制药工业看好。一、概述(一)缓释、控释制剂的概念、特点1缓释制剂(sustained-releasepreparations)系指在规定的释放
2、介质中,按要求缓慢地非恒速释放药物,与其相应的普通制剂比较,给药频率至少减少一半或给药频率比普通制剂有所减少,且能显著增加患者顺应性的制剂。2控释制剂(controlled-releasepreparations)系指在规定释放介质中,按要求缓慢地恒速或接近恒速地释放药物,与其相应的普通制剂比较,给药频率至少减少一半或给药频率比普通制剂有所减少,血药浓度比缓释制剂更加平稳,且能显著增加患者顺应性的制剂。缓释、控释制剂之间的差别主要体现在两个方面,其一是体外释药特征不同:控释制剂是不受时间影响的恒速释药,即按零级动力学规律释放药物;而缓释制剂是按时间变化先快后慢的非恒速释药,即按一级动力学或Hi
3、guchi方程等规律释放药物。其二是体内药物动力学特征不同:控释制剂体内血药浓度在一定时间内能维持在一个恒定的水平;而缓释制剂达不到这样的效果。3缓释、控释制剂的特点(1)减少给药次数,避免夜间给药,增加病人用药的顺应性。(2)血药浓度平稳,避免“峰谷”现象,避免某些药物对胃肠道的刺激性,有利于降低药物的毒副作用。(3)增加药物治疗的稳定性。(4)可减少用药总剂量,因此,可用最小剂量即可达到最大药效。虽然缓、控释制剂有其优越性,但仍存在一些弊端:缓控释制剂是基于健康人群平均药物动力学参数制定的给药方案,在疾病状态或药物动力学特性有所改变时,不能灵活调节给药方案;剂量调节灵活性降低,如果临床上遇
4、到某种特殊情况(如出现较大副作用)往往不能立刻停止治疗;设备和工艺费用较普通制剂昂贵。(二)缓释、控释制剂的载体材料口服缓控释制剂的载体材料,除赋形剂、附加剂外,主要有骨架材料和包衣材料等。1骨架材料采用骨架技术制备缓控释制剂的载体材料主要包括亲水凝胶骨架材料、溶蚀性骨架材料和不溶性骨架材料三大类。(1)亲水凝胶骨架材料主要是一些亲水性聚合物,其特点是遇水或消化液后经水合作用而膨胀,并在释药系统周围形成一层稠厚的凝胶屏障,药物可以通过扩散作用透过凝胶屏障而释放,释放速度因凝胶屏障的作用而延缓,材料的亲水能力是控制药物释放的主要因素。常用的亲水凝胶骨架材料有:天然胶,如海藻酸盐、琼脂、黄原胶、西
5、黄蓍胶等;非纤维素多糖类,如甲壳素、甲壳胺、脱乙酰壳聚糖(壳聚糖)、卡波姆、半乳糖甘露聚糖等;高分子聚合物,如聚维酮(PVP)、乙烯聚合物、丙烯酸树脂、聚乙烯醇(PVA)等;纤维素衍生物,如甲基纤维素(MC)、羧甲基纤维素钠(CMC-Na)、羟丙甲纤维素(HPMC)、羟丙基纤维素(HPC)、羟乙基纤维素(HEC)等,其中HPMC(黏度4000Pas100000Pas)最常用。(2)溶蚀性骨架材料主要是疏水性强的脂肪类或蜡类物质,其特点是在体温下骨架逐渐溶蚀,药物从骨架中释放,释放速率取决于骨架材料的用量及溶蚀性。如果在溶蚀性骨架材料中加入硬脂酸钠、三乙醇胺等溶蚀性的表面活性剂,可在不同程度上增
6、加药物的释放速度。常用的有动物脂肪、蜂蜡、巴西棕榈蜡、氢化植物油、硬脂酸(十八酸)、硬脂醇(十八醇)、单硬脂酸甘油酯等。(3)不溶性骨架材料主要是不溶于水或水溶性极小的高分子聚合物或无毒塑料。其特点是口服后不被机体吸收,骨架材料无变化地由粪便排出。常用的有乙基纤维素(EC)、聚甲基丙烯酸酯、无毒聚氯乙烯、聚乙烯、乙烯-醋酸乙烯共聚物、硅橡胶等。其中EC是应用最广泛的水不溶性纤维素衍生物之一,在药剂中有多种用途。在国际市场上EC有很多新型号,如标准型4优级(黏度35.5mPas)、标准型7优级(黏度68mPas)、标准型10优级(黏度911mPas)、标准型20优级(黏度1822mPas)、标准
7、型100优级*(黏度90110mPas)等,供不同用途使用。制备控释膜时,可选用标准型7、10及20优级品,一般包衣时可选用中型号5、15或其混合物,制备微囊时可用标准型45或100优级品,制粒时可用标准型10、20或45优级品。2包衣材料采用包衣技术制备缓控释制剂的载体材料主要包括胃溶型、肠溶型和不溶型材料。(1)胃溶型包衣材料常用的有羟丙甲纤维素(HPMC,黏度3Pas15Pas)2%3%水溶液或30%70%乙醇溶液、羟丙基纤维素(HPC)2%水溶液、聚维酮(PVP)5%10%水溶液或5%10%乙醇溶液、甲基纤维素(MC)、聚乙烯醇(PVA)和丙烯酸树脂号等。(2)肠溶型包衣材料常用的有醋
8、酸纤维素酞酸酯(CAP)、羟丙甲基纤维素酞酸酯(HPMCP)、羟丙甲基纤维素琥珀酸酯(HPMCAS)、虫胶、玉米朊、EudragitL100和EudragitS100(即丙烯酸树脂号和号)等。(3)不溶型包衣材料常用的有乙基纤维素(EC)、醋酸纤维素(CA)、聚乙烯、聚丙烯、聚丙烯酸树脂EudragitRL100和EudragitRS100等。乙基纤维素除在控释包衣中广泛应用外,还能与其他纤维素聚合物,尤其是与HPMC混合,可以提高膜的韧性及增加片子表面的光泽,同时还可获得适宜释药性能的包衣膜。目前,市售的Surelease和Aquacoat均为采用乙基纤维素与适宜增塑剂或其他添加剂制成的水分
9、散体型包衣材料。EudragitRL为高渗型丙烯酸树脂,EudragitRS则为低渗型丙烯酸树脂,两者混合应用可获得不同渗透性的缓释包衣膜,是应用于缓控释制剂最多的丙烯酸树脂成膜材料。(三)缓、控释制剂的释药原理缓控释制剂释药原理包括:溶出原理、扩散原理、溶蚀与扩散相结合的原理、渗透压原理和离子交换作用。1溶出原理药物的溶出可用Noyse-whitney方程表示:(1)式中:为溶出速度;S为固体的表面积;D为药物的扩散系数;V为溶出介质的体积;h为扩散层厚度;CS为药物溶解度即药物饱和溶液的浓度;C为t时间药物浓度。根据Noyse-whitney方程,通过减小药物的溶解度,降低药物的溶出速度,
10、可使药物缓慢释放,达到延长药效的目的。利用溶出原理达到缓释作用的方法很多,常用的方法有:(1)将药物制成溶解度小的盐类或酯类:溶解度大的固体药物在体内吸收快,排泄也迅速,显效时间短。如果将其制成难溶性的盐或酯类,可延长药物在体内的作用时间,达到长效的目的。如临床上常用的抗菌药红霉素,普通药物一天给药4次(6h给药一次),每次0.20.5g,制成红霉素乳糖酸盐注射液后,12h给药一次,每次剂量为0.10.2g;青霉素钾(钠)盐与普鲁卡因生成青霉素普鲁卡因盐(1:250),作用时间由原来5h延长到12h。(2)与高分子化合物生成难溶性盐类:鞣质、蛋白质等均为高分子材料,均可与生物碱类形成难溶性盐,
11、其药效比母体药物延长。碱性蛋白(如鱼精蛋白)与胰岛素结合成溶解度较小的鱼精蛋白胰岛素,加入锌盐生成鱼精蛋白锌胰岛素,药效从6h延长到1824h。(3)控制颗粒大小:药物的溶出速度与其表面积有关,难溶性药物颗粒直径增加,表面积减小,吸收速度减慢。例如超慢性胰岛素中所含胰岛素锌晶粒大部分超过10m,其作用时间可达30h,半慢性胰岛素中所含胰岛素锌晶粒大部分超过2m,作用时间仅为1214h。再如口服微粉化的阿司匹林8h后排泄到尿中水杨酸的量为203.4mg,而服用相同剂量未经微粉化的阿司匹林8h后排泄到尿中水杨酸的量仅为149.9mg。2扩散原理药物以扩散作用为主释放药物的过程可用Ficks第一扩散
12、定律表示。(2)式中:为释放速度;A为表面积;D为扩散系数;K为药物在膜与囊心之间的分配系数;L为包衣层厚度;C为膜内外药物浓度之差。药物扩散包括三个方面:通过水不溶性膜扩散;通过含水性孔道的膜扩散;通过聚合物骨架扩散。利用扩散原理达到缓控释作用的方法有:包衣、制成微囊、制成不溶性骨架片、增加黏度以减小扩散速度、制成乳剂和植入剂等。(1)包衣随着辅料行业突飞猛进的发展,高分子材料不断引入制剂工业,使用包衣法制备缓、控释片剂、胶囊剂越来越趋向合理化,释药速率更理想化。例如将含药颗粒或小丸分成若干份,分别包上不同厚度或不同释药性能的衣料,然后按照一定比例组合在一起得到释药速度不同的缓释制剂,装入胶
13、囊或压制成片,其释药特性由包衣材料性能或包衣厚度决定,同种材料包衣厚度不同,颗粒或小丸的释药速率不同,不同释药速率的颗粒或小丸组合后释药曲线接近于正态分布。(2)制成微囊微囊是由囊材和囊心物组成的,囊材分为天然的、合成的和半合成的高分子材料,由囊材包裹药物形成微囊的技术称为微型包囊术,囊膜相当于半透膜,在胃肠道中水分可自由进入囊膜内,溶解囊内药物形成饱和溶液,通过扩散作用释放药物。释药速度由囊膜厚度、孔径及弯曲程度决定。(3)制成不溶性骨架片以不溶性的无毒塑料为骨架材料与药物制成片剂,通过胃肠道将所含的药物释出,而片剂骨架无变化地随粪便排出。水溶性药物较适于制备此类骨架片。(4)增加黏度以减小
14、扩散速度增加黏度以延长药物作用的方法主要用于注射剂、滴眼剂或其它液体制剂。其主要理论依据是Ficks第一扩散定律,式(15-3)中的D为扩散系数。(3)(4)式中:R为气体常数;T为绝对温度;N0为阿佛加德罗常数;f为摩擦系数;为介质的黏度。由此可知,溶液的黏度越大,药物扩散阻力越大,扩散速度越慢。增加溶媒黏度的主要方法是在溶液中加入适宜的高分子材料,如3%CMC用于普鲁卡因注射液,使止痛时间延长至24h;将1.4%PVA用于2%毛果芸香碱滴眼剂中,作用时间由28min延长至50min等。(5)制成乳剂将水溶性药物制成W/O型乳剂,在体内水相中的药物先向油相扩散,再由油相分配到体液,达到长效作
15、用。3溶蚀与扩散、溶出结合亲水凝胶骨架片已广泛用于缓控释制剂的研究,其释药过程包含以下几个步骤:骨架片遇消化液表面润湿、吸水后膨胀形成凝胶层;表面药物向消化液中扩散;凝胶层继续水化骨架溶胀,凝胶层增厚延缓药物释放;骨架同时溶蚀,水分继续向片芯渗透,骨架完全溶蚀,药物全部释放。4渗透压原理(见第二部分)5离子交换作用离子交换作用通过树脂交换进行。常用的树脂由水不溶性交联聚合物组成,聚合物链的重复单元上含有成盐基团,药物可结合在树脂上。当带有适当电荷的离子与离子交换团接触时,通过交换将药物游离释放出来。如阳离子交换树脂与有机胺类药物的盐交换,或阴离子交换树脂与有机酸盐交换,即成药树脂。干燥的药树脂
16、制成胶囊剂或片剂供口服,在胃肠液中,药物再被交换而释放于消化道中。维生素B类、烟酸、泛酸、叶酸和麻黄碱、阿托品、苯丙酸、异丙嗪等均曾制成药树脂。离子交换树脂的交换容量甚小,故剂量大的药物不适于制成药树脂。(四)缓、控释制剂的设计1药物选择(1)根据临床应用选择药物制备缓释、控释制剂的首选药物是抗心率失常药、抗心绞痛药、降压药、抗组胺药、支气管扩张药、抗哮喘药、解热镇痛药、抗精神失常药、抗溃疡药、铁盐、氯化钾等,如维拉帕米(t1/2=2.55.5h)、普萘洛尔(t1/2=3.14.5h)、茶碱(t1/2=38h)等。(2)根据药物理化特性及药物动力学特性选择药物制备缓释、控释制剂最佳条件是半衰期
17、适中的药物(如t1/2=28h);一次给药剂量0.51.0g的药物;油水分配系数适中的药物;溶解度大于1.0g/L的药物;不会引起大的不良反应的药物;最好在整个消化道都有吸收的药物。通常认为,具有如下特征的药物不适宜制备缓、控释制剂:一次剂量很大(如0.5g);药理活性强;溶解度小或受pH影响显著;吸收不规则或受生理因素影响显著;t1/2很短(t1/224h);有特定吸收部位;临床应用时剂量需要精密调节的药物等。此外,抗生素类药物,由于其抗菌效果依赖于峰浓度,加之耐药性问题,一般不宜制成缓控释制剂。但是,上述认识并非原则,由于制剂技术的进步,对口服缓控释制剂药物的选择已发生了一些观念性的变化,
18、许多限制已被打破。如普萘洛尔、维拉帕米等首过作用强的药物制成了缓控释制剂;硝酸甘油半衰期很短,也可制成每片2.6mg的控释片;地西洋(安定)半衰期长达32h,USP也收载有缓释制剂产品,卡马西平(tl2=36h)、非洛地平(tl2=22h)等半衰期长的药物、苯氯布洛芬(剂量700mg,片重1g)等剂量大的药物、头孢氨苄、头孢克洛、庆大霉素等抗生素均制成了缓控释制剂;可待因、吗啡等成瘾性药物也制成了缓、控释制剂。2给药间隔时间选择缓、控释制剂的相对生物利用度一般应在普通制剂的80%120%范围内,若药物的吸收部位主要在小肠,宜设计12h给药一次的缓、控释制剂;若药物除小肠外,在大肠也有一定吸收,
19、则可考虑设计24h给药一次的缓、控释制剂。缓控释制剂峰谷浓度比显著小于普通制剂,一般t1/2短,治疗指数小的药物,可设计12h服药一次;t1/2长,治疗指数大的药物,可设计24h给药一次的缓控释制剂。个别药物根据需要也可以设计成较短用药时间的缓释制剂,如国外销售的美沙芬缓释胶囊,每8h给药1次,这可能对一些半衰期很短的药物是另一种选择,虽然服药次数并没有减少,但副作用将因平稳了血药浓度而减小。3剂量设计缓、控释制剂剂量的设计通常有两种方法,其一是经验方法,即根据普通制剂的用法和用量,确定缓控释制剂的剂量,如普通制剂每天用药4次,每次剂量为15mg,制成缓、控释制剂一天用药一次,则剂量为60mg
20、。但该法设计的剂量不准确,如欲得到理想的血药浓度-时间曲线,缓控释制剂的剂量设计可采用第二种方法,即利用药物动力学参数,根据需要的血药浓度和给药间隔设计缓控释制剂的剂量。4.安全性设计某种药物的缓控释制剂,要尽可能查阅或了解该药物的安全性范围(如最低有效浓度、最低中毒浓度等),根据这种安全范围(或称为治疗指数)的大小,来选择适宜的方式制备缓控释制剂,使其释药效果符合药物的安全范围。通常情况下,治疗指数越大,表示该药越安全。对于治疗指数小,治疗浓度的安全范围窄的药物,在设计缓控释制剂时应精确控制剂型中药物的释放,防止药物大量突释或释药速率过快导致血药浓度超过其最低中毒浓度,引起相应的毒副作用。二
21、、口服缓、控释给药系统的发展现状(一)膜控型缓控释给药体系膜控型缓控释给药体系即膜控型缓控释制剂是将药物制成适当剂型(如片剂、颗粒、小丸或药物粉末)包裹在一定厚度的衣膜内,通过包衣膜来控制和调节药物释放速率和释药行为的一类释药系统。对于这类释药系统,不同性质的成膜材料的选择、包衣膜中各种添加组分的选择以及膜控制剂的制备方法都会对释药系统的释药行为产生极大的影响。1释药原理膜控型缓、控释制剂的释药原理,主要遵从Ficks第一扩散定律。如将准备压片的颗粒分成若干份,分别包上不同厚度或不同释药性能的衣料,然后制成片剂。服药后片剂崩解,不包衣料的颗粒中的药物迅速释放达到有效血药浓度,包有不同厚度或不同
22、释药性能的衣料的颗粒则按药物在体内代谢消除的需求而释放供给药物,以维持在某一理想水平。也可在片芯外面包多层衣料,如两层衣料,内层为控释膜以控制药物的释放,外层为含药的水性衣料,可快速释放作为速释部分。另外,也可在骨架片表面再行包衣,使药物释放更合理。2影响释药的因素影响释药的因素主要是片芯和包衣液的性质。片芯的性质如药物的性质、片芯所用的辅料和片芯的硬度等,若药物和辅料疏水性强、片芯硬度大,则药物的释放速率会减慢,颗粒越大,则比表面积越小,药物的释放即越慢;包衣液的性质如包衣液的组成、包衣层的厚度等,包衣液的疏水性越强或包衣层越厚(即包衣液用量大),则药物释放慢。因此,因综合考虑影响释药的因素
23、。3包衣膜处方设计膜控型缓控释制剂主要是通过包衣膜来控制和调节药物释放速率,包衣材料一般不能单独包衣形成包衣膜,必须进行处方配制成包衣液,采用一定的工艺形成具有一定渗透性和机械性的衣膜。包衣液的组成通常包括成膜材料、溶剂、增塑剂、致孔剂、着色剂/遮盖剂、抗黏剂等。(1)成膜材料常用的成膜材料有胃溶型、肠溶型和不溶型(见第一节),各种成膜材料成分理化性质相差很大,在选择时首先要考虑包衣材料在胃肠道的释放部位,以及聚合物在包衣溶剂及胃肠生理环境的溶解度,水汽通透性、黏性及机械性能等。(2)包衣溶剂常用的溶剂有水、醇类、酮类、酯类和氯化烃类。由于各种溶剂的蒸发潜热不同,包衣操作时,有不同的蒸发速率,
24、而且成膜材料的溶胀及链的松弛程度均受到溶剂的影响,会直接影响膜的质量,故而溶剂系统在很大程度上决定了最终形成衣膜的性质和特点。选择溶剂的首要条件是其必须与成膜材料相互作用良好,即成膜材料在溶剂中能最好和最大范围地溶解。一般认为成膜材料最适宜的溶剂应能使聚合物在溶液中获得最大的伸展,形成的膜具有最大的粘结或内聚强度,从而使膜具有最佳的机械强度。一般成膜材料难溶于水,故常用有机溶剂进行薄膜包衣,其优点是系统操作周期短,对热不稳定的药物应用价值较高。但由于有机溶剂存在着明显的缺点,例如易燃、易爆、污染空气,毒性较大以及残留量等问题限制了其进一步的发展。因此,以水为分散介质的包衣液目前已成为缓、控释包
25、衣制剂的主要材料,如Surelease、Aquacoat和欧巴代等,它的最大优点是彻底革除有机溶剂、固体含量高、粘度低、易操作、成膜快等。但水性包衣也存在一定的缺陷:易受微生物污染,操作时间的延长给湿热敏感的药物带来不利;易溶性药物在包衣过程中可能会迁移到膜中而使稳定性受到影响等;容易使敏感性药物活性减弱,如胰腺酶的肠溶小丸,在使用水性包衣技术时这种酶会失去13%到23%的活性,而使用有机溶剂包衣平均失活才5%。(3)增塑剂增塑剂与聚合物有良好的柔和性,相互反应后可降低高分子聚合物中邻近分子之间链交缠程度,降低弹性系数,从而改善聚合物的机械强度,提高包衣膜的性能。常用的增塑剂可分为水溶性和脂溶
26、性增塑剂两大类。水溶性增塑剂常用的有丙二醇、甘油、聚乙二醇(PEG)等;脂溶性增塑剂常用的有三醋酸甘油酯(TA)、蓖麻油、邻苯二甲酸二乙酯(DEP)、葵二酸二丁酯(DBS)、柠檬酸三丁酯(TBC)、柠檬酸三乙酯(TEC)、硅油和司盘等。DEP、DBS、TBC、TEC、TA等均可作为EC水性包衣液的增塑剂,水溶性增塑剂虽溶于水,但与EC的相溶性较差,不能进入EC内部而起到增塑作用,一般不被选用。同一种成膜材料,所用的增塑剂种类和用量不同,会得到不同性质的包衣膜。水分散包衣液,如果增塑剂用量太少,不能克服胶乳粒子变形的阻力,结果会形成不完整或不连续的衣膜;而增塑剂用量过大,由于聚合物薄膜太软,而引
27、起包衣制剂的聚集、粘连和流动性差,包衣时难以操作,也不能获得完整的衣膜。增塑剂在包衣溶液处方中的浓度由许多因素决定,包括聚合物的性质、使用方法以及处方中所用的其它附加剂的性质。一般增塑剂的常用浓度相当于聚合物重量的1530。对特定的包衣溶液或分散体中的最适用量,则必须经过细致的实验才能确定。(4)致孔剂无渗透性或低渗透性成膜材料(如醋酸纤维素或乙基纤维素等)单独制成的包衣膜,往往对水分或药物的通透性很低,难以满足释药的要求,故常在这些材料的包衣液中加入水溶性的物质,来增加包衣膜的通透性,以使制成的制剂获得所需的释药速率。常用的致孔剂为:PEG类、PVP、蔗糖、盐类以及其他水溶性成膜材料如HPM
28、C、HPC等。有时,也将部分药物加在包衣液中作致孔剂,同时这部分药物又起速释作用。当含致孔剂的缓释包衣制剂与水或消化液接触时,衣膜上的致孔剂逐渐溶解,将使膜形成微孔或海绵状结构,从而增加了介质和药物的通透性。(5)其他包衣液处方中除以上一些成分外,有时还需加入抗粘剂、着色剂、消泡剂、稳定剂等。如EC水胶乳包衣液中加表面活性剂十二烷基硫酸钠为稳定剂,二甲基硅油为消泡剂。在以有机溶剂制成的包衣液处方中加入少量(一般为包衣液体积的1%3%)滑石粉、硬脂酸镁、二氧化硅、二氧化钛等抗粘剂,可以有效地防止包衣过程中易于出现的粘连结块等问题,从而可以降低包衣工艺操作难度,缩短操作时间。3膜控型缓、控释制剂的
29、制备方法(1)包衣片剂的制备将药物利用常规的方法制成片芯,然后将包衣材料溶液用高效喷雾器(连续性或间隙性方式)喷雾包于片芯上,在片芯表面包上适当厚度的衣膜。包衣材料用量通常用衣膜增重来代替衣膜厚度进行控制。目前一般用改进的包衣锅如高效包衣锅、加档板包衣锅及埋管式喷雾包衣锅进行包衣。高效包衣锅是在锅壁上开数千个小孔,孔径约1.5mm,热空气通过小孔吹人锅内,可大大提高包衣效率。高效包衣锅仅适用于片剂包衣,埋管式喷雾包衣是在普通包衣锅的底部装有通入包衣溶液、压缩空气和热空气的埋管,仅适用于以水为分散介质的混悬型包衣液,由于喷雾包衣连续操作,可缩短包衣时间,能用于小粒子的包衣。(2)包衣颗粒与包衣小
30、丸的制备流化床包衣法是缓释颗粒和小丸包衣常用的方法。是借助急速上升的空气流使片剂、小丸剂或颗粒等在包衣室内处于悬浮流化状态,同时将包衣液以雾状喷入,使之包裹在制剂表面,并被不断通入的热空气所干燥,反复包衣直至所需厚度。其特点是操作连续,进料和出料无须停止操作;操作时流床湿度易于控制并能很快达到等温条件。目前常用于缓释包衣的流床类型有:顶喷造粒和包衣两用的流化床;底喷包衣流化床及旋转式流化床等。旋转式流化床以其独特的空气流型结合离心力使之既适用于造粒又可包衣,能均匀地混合物料,制成粒度重现性好的球形颗粒。(3)压制包衣法压制包衣法是将聚合物包衣材料粉末加入适量辅料,制成颗粒后直接经包衣压片机压包
31、在片芯表面,但此法需要特殊的由两台旋转式压片机组成的包衣压片机。(4)热熔包衣法本法是采用熔点较低的聚合物材料,将其加热后成液态或粘流态,喷洒与丸心或颗粒表面,再使之冷却成膜。目前,该法尚处于研究阶段,所报道的应用实例尚少。(二)骨架缓、控释给药体系骨架型缓控释给药体系即骨架型缓控释制剂,系指药物根据溶出、扩散、离子交换等原理,与一种或多种骨架材料通过压制或融合技术制成片状、小丸、小粒或其他形式的固体制剂称为骨架型制剂,骨架呈多孔型或无孔型。利用骨架技术制备的骨架片,常用的有溶蚀性骨架片、亲水性凝胶骨架片和不溶性骨架片。1亲水性凝胶骨架片(1)释药机理亲水凝胶骨架片释药机制即溶蚀与扩散、溶出结
32、合,即药物扩散和凝胶骨架溶蚀的综合效应。即将药物包埋于亲水性纤维素类高分子材料骨架中制成的骨架片称为亲水性凝胶骨架片,药物的释放与药物性质有关。亲水凝胶遇水后形成凝胶层,水溶性药物的释放速度取决于药物通过凝胶层的扩散速度,而水中溶解度小的药物,释放速度由凝胶层的逐步溶蚀速度所决定,不管哪种释放机制,凝胶最后完全溶解,药物全部释放。(2)影响释药的因素影响亲水凝胶骨架片中药物释放速率的因素很多,归纳起来可总结为以下几点:药物的性质及在处方中的含量;骨架材料的理化性质、用量、黏度及粒径;附加剂的种类与用量;制备工艺的影响,如制备方法、压力、片剂的形状及大小等。药物的水溶性不同,释药机制也不同。对水
33、溶性药物主要以药物的扩散和凝胶层的不断溶蚀为主,对难溶性药物则以骨架溶蚀为主。(3)制备方法亲水性凝胶骨架片的制备工艺与普通片差异不大,一般采用湿颗粒压片法、干颗粒压片法和粉末直接压片法等,生产工艺简单,一般片剂生产的设备即可满足要求。通过调节骨架的组成等可改变凝胶层的特性,较方便地获得具有理想释药特性的处方,片剂发生崩解的可能性极小,服用安全。另外,该骨架片是一均匀系统,不会因处方组成或生产工艺的微小改变而对药物的释放性能产生重大影响。个成功的亲水性骨架片处方选用的高分子材料必须能快速水合形成凝胶层,以使片剂服用后不会迅速崩解,增加处方中高分子材料的比例可增加形成凝胶的黏度,导致药物的扩散速
34、度减慢而使药物释放减慢。以HPMC为骨架材料制备的骨架片,当处方中含20HPMC可达到满意的药物释放速度,但必须考虑片剂中其他填充剂、黏合剂和崩解剂的影响。以HPMC为亲水性基质延缓药物缓释的例子很多,如对乙酰氨基酚格列吡嗪、硫酸奎尼丁、双氯酚酸钠缓释片等。2溶蚀性骨架片(1)释药机理将药物包埋于溶蚀性骨架材料中制成的骨架片,其释药机制是通过孔道扩散与骨架的溶蚀控制药物释放,可加入亲水性表面活性剂或水溶性材料调节释药速度。如生物溶蚀性骨架片,处方组成为硬脂醇、巴西棕榈蜡和PVP,将PVP作为致孔剂加入到硬脂醇与巴西棕榈蜡熔融状态的混合物中,再加入药物混合均匀,凝固后制粒压片。结果表明在8h内,
35、含5%致孔剂的骨架缓释片比不加致孔剂的对照缓释片体外释放百分率增加37%,加20%致孔剂时释放百分率增加55%。致孔剂的添加量在10%20%时,释药速率最佳。(2)影响释药的因素溶蚀性骨架片的释药速率与骨架材料的性质、用量、药物的性质及在处方中的含量、药物颗粒大小、致孔剂的性质与用量、片剂大小、工艺过程等因素有关,pH、消化酶对脂肪酸的水解影响很大,如棕榈酸甘油酯(单、双、三元酯)对磺胺的缓释作用,其缓释效果是按单酯、双酯、三酯的顺序依次递增的。(3)制备方法将药物包埋于缓慢溶蚀骨架中制备溶蚀性骨架片的方法有三种:溶剂蒸发法即将药物与辅料的溶液或分散体蒸发除去溶剂,干燥、制粒、压片;熔融法即将
36、药物与辅料直接加入熔状态的蜡质骨架材料中(温度控制在略高于蜡质熔点),然后将混合物冷凝、固化、粉碎成一定粒度、压片;热混合法即将药物与十六醇在玻璃化温度(60)混合,团块用玉米脘醇溶液制粒后压片。3不溶性骨架片(1)释药机理以不溶于水或水溶性极小的高分子聚合物或无毒塑料为材料制成的片剂,其药物释放主要分为三步:消化液渗入骨架孔内;药物溶解;药物自骨架孔道释出。在药物释出和制剂通过胃肠道后,压制片仍能保持原来形状,释药后的惰性骨架随粪便排出。不溶性骨架片常用的骨架材料有EC、聚甲基丙烯酸酯、无毒聚氯乙烯、聚乙烯、乙烯-醋酸乙烯共聚物、硅橡胶等不溶于水或水溶性极小的高分子聚合物或无毒塑料。由于脂溶
37、性药物自骨架内释出速度过缓,因而只有水溶性药物适于制备此种骨架片,释药机制可用Higuchi方程描述。(2)影响释药的因素释药速度可通过药物在骨架中的起始浓度,药物的溶解度,骨架的空隙率、曲率,制备骨架时的溶剂系数以及骨架材料等参数来控制。而难溶性药物自骨架中释放速率很慢,不考虑制成此种骨架缓释制剂。此外,该类片剂有时释放不完全,大量药物包含在骨架中,因此,大剂量的药物也不宜制成这类缓释制剂。(3)制备方法不溶性骨架片的制备方法很多,通常采用将药物与不溶性骨架材料混合后制颗粒,再压片。制颗粒的方法有:用有机溶剂如乙醇、丙酮和二氯甲烷等为润湿剂制粒;用溶于有机溶剂的骨架材料溶液如EC的乙醇溶液作
38、黏合剂制粒;在骨架材料的有机溶液中添加其他聚合物如PVP为黏合剂制粒;将药物溶于有机溶媒为润湿剂制粒;将药物溶于含骨架材料的溶液中,将溶媒蒸发后即得药物在骨架材料中的固体分散体,粉碎制粒后压片;在药物颗粒中加入一定量骨架材料的粉粒,混合后直接压片。为了调节释药速率,可在处方中加入电解质(最大用量可大片重的30%)、糖类和亲水凝胶(最大用量可大片重的10%)等。(三)渗透泵控释给药体系渗透泵型控释给药体系是用渗透压原理制成的一类制剂。口服渗透泵片以其独特的释药方式和稳定的释药速率引起人们的普遍关注,是目前应用最为广泛的渗透泵制剂。1渗透泵控释给药体系的分类(1)单室渗透泵又称初级渗透泵,一般用于
39、易溶性药物。片芯是由药物和具有高渗透性物质组成,包衣膜多是由醋酸纤维素或乙基纤维素等高分子材料形成的刚性半透膜,半透膜上通常用激光或其他机械力打一小孔作为药物的输出通道。口服后胃肠道的水分通过半透膜进人片芯,形成药物的饱和溶液或混悬液,加之高渗透辅料溶解,膜内外存在较大的渗透压差,从而将药液以恒定速率挤出释药孔。(2)多室渗透泵多用于难溶性药物。一般至少由药室和动力室两室组成。药室是由药物和可溶性辅料或药物的混悬液组成,动力室是由一些可溶胀的高分子材料组成。使用时,水分由半透膜进入到动力室,使得高分子材料吸水膨胀,从而挤压药室使药物由释药小孔释放。如德国拜耳公司开发的硝苯地平控释片即为双室型渗
40、透泵片。(3)三层渗透泵三层渗透泵片是由中间推进层和两边两层药室组成,三层外边包了一层半透膜,每个药室各有一释药孔。当水分进入到推进层后,推进层膨胀,使药物从两个药室释放出来。此系统的优点是避免了某些药物从一个小孔释放时产生的胃肠道黏膜副作用。(4)微孔型渗透泵激光打孔有可能使膜灼烧或使孔径大小不一,当释药孔道较少时,释药孔道易在胃肠道被堵塞而导致无规则释药。近年有人在成膜材料中加人致孔剂水溶性物质改善膜的通透性,制成微孔型渗透泵。改变致孔剂的用量可调节膜上微孔,从而控制释药速度。渗透泵制剂也有其不足之处,如制备工艺复杂、不易工业化生产。因此设计简单且易于工业化生产的渗透泵制剂是渗透泵制剂的发
41、展方向,激光打孔技术的发展也必将推动渗透泵制剂的发展;此外,一些基于渗透原理的制剂如微丸系统也是渗透泵制剂的重要发展方向之一。2渗透泵控释给药体系处方设计(1)药物的选择渗透泵制剂适用于治疗窗窄、生物半衰期短或刺激性大的药物,对水中不稳定的药物不适用,渗透泵对药物的水溶性有一定的要求,包封于渗透泵中的药物溶解度应在0.050.3g/ml范围内,以保持适当的恒速释药和零级释药分数。溶解度大于0.3g/ml者,需要加一些辅料使其溶解度降低。如地尔硫卓37的溶解度为0.59g/m1,在己二酸、柠檬酸等的存在下,将适量NaCl与地尔硫卓一起制成片核,再包封于含致孔剂山梨醇的醋酸纤维素半透膜内,制成的渗
42、透泵片遇水时,地尔硫卓被1mol/L的NaCl溶液包围,且能保持16h。当地尔硫卓的溶解度降低为0.155g/m1时,零级释药分数达到4/5以上,恒速释药可达1416h之久。溶解度太大而剂量又小的药物,即使制成渗透泵剂型,也难以恒速释药。溶解度小于0.05g/m1者,可适当加入一些增溶剂以加快释药速度。如氟哌啶醇不溶于水,与增溶剂(无水柠檬酸)、缓释剂(PVP)和膨胀剂(交联PVP)等一起制成含药10mg的渗透泵片,能以每小时0.83mg的平均速率释药12h。Alaz公司的生产技术可使每粒渗透泵制剂在24h内恒速释放2800mg的药物,适用于溶解度范围较宽的药物。(2)成膜材料的选择口服渗透泵
43、制剂常用的成膜材料为醋酸纤维素,文献报道的成膜材料尚有乙基纤维素、聚氯乙烯、聚碳酸酯、乙烯醇-乙烯基乙酸酯和乙烯-丙烯聚合物等,这些材料现在已经较少使用。醋酸纤维素的乙酰化率决定醋酸纤维素对水的渗透性。随着乙酰化率的增加,醋酸纤维素的亲水性逐渐减小:通过调整不同乙酰化率醋酸纤维素的比例,可以控制包衣膜的渗透性,从而控制药物的释放速率。采用特殊的包衣方法可以在片芯表面形成醋酸纤维素不对称膜,使透膜水流量增大,溶解度较小的药物也可以获得较大的释药速度。由于渗透泵制剂的特殊工艺要求,制备过程中要使用大量有机溶剂来完成包衣过程。近年来,随着人们环境保护意识的增强和对高分子材料水分散体包衣技术的深入研究
44、,利用水分散体包衣技术制备口服渗透泵制剂,改进了制备工艺,丰富了渗透泵制剂的研究内容,为研究开发新型控释制剂奠定了基础。(3)渗透促进剂的选择渗透促进剂是指能够产生渗透压的物质,包括促渗透剂和促渗透聚合物两部分,分别适用于单室渗透泵和多室渗透泵。促渗透剂包括硫酸镁、氯化镁、硫酸钾、硫酸钠、d-甘露醇、尿素、琥珀酸镁、酒石酸等。当药物本身的渗透压较小时,加入促渗透剂用来产生渗透压,维持药物释放;促渗透聚合物具有吸水膨胀性,当与水或液体接触时可膨胀或溶胀,膨胀后促渗透聚合物的体积可增长250倍,促渗透聚合物可以是交联或非交联的亲水聚合物,般以共价键或氢键形成的轻度交联为佳。常用的有:相对分子质量0
45、.3万500万的聚羟基甲基丙烯酸烷基酯,相对分子质量1万36万的PVP,阴离子水凝胶,相对分子质量为45万400万的Carbopol羧酸聚合物,相对分子质量力8万20万的Goodrite聚丙烯酸,相对分子分子质量为10万500万以上的Polyox聚环氧乙烷聚合物等。(4)释药孔径的设计普通口服渗透泵制剂的表面有一个或多个释药孔,当置于含水的环境时、水分在渗透压差的作用下进入包衣膜内部,形成药物溶液或混悬液从释药孔中释放出来。释药孔径一方面要小得可以避免药物不受控制的释放,另一方面又要大得足以防止药片内的压力增加。因此,释药孔径的设计对于口服渗透泵的释药速率有极大的影响。早期文献曾报道,用机械钻
46、孔来制备渗透泵片,这种方法不适用于机械化大生产,仅限于试验研究。并且,机械钻孔导致的包衣膜破损影响渗透泵片的释药速率;目前,工业生产中常采用激光打孔的方式。该方法使用激光作为致孔的能量来源,对包衣膜的损伤小,工作效率0.1万1万片/min。有文献报道,采用改进的冲头,在包衣前的片芯上形成凹痕,包衣后直接形成释药孔。通过改进的压片机来制备释药孔径,该方法可以将生产效率提高到4万8万片/min。3口服渗透泵制剂的制备对于单室渗透泵制剂而言,其制备工艺与普通薄膜包衣片制备工艺类似。将药物与黏合剂、填充剂、促渗透剂等混合均匀后制粒,干燥,压成片芯后包衣,用激光或其他方法在包衣膜表面形成释药孔。多室渗透
47、泵制剂在片芯的制备上较为复杂,首先要选择适当的基质,使药物能够均匀地分散在基质中。基质必须具有足够的渗透压,使水分能够通过包衣膜进入膜内,同时基质在水分作用下能够形成易于流动的状态,使药物混悬液轻易地被推出释药孔。在制备片芯时,采用特殊的压片机,首先将含药层压片,然后把促渗透聚合物加在含药层的上面进行二次压片,最终形成双层片。将双层片用常规的包衣方法进行包衣,并用适当方法制备释药孔,制备多室渗透泵。(四)胃内滞留型给药系统胃滞留型给药系统(gastricretentingdrugdeliverysystem,GRDDS)为一类重要的口服缓控释给药系统,能延长药物在胃内滞留时间、增加药物在胃或十
48、二指肠的吸收程度、降低毒副作用、稳定血药浓度、减少服药次数、提高临床疗效的新型制剂。胃内滞留型制剂在胃内的停留时间较一般制剂长(通常4h),通过制剂中聚合物的作用缓慢释放药物,从而提高药物的生物利用度。该类制剂在以下药物的口服给药中有特殊的优点:胃内起局部作用的药物;吸收部位在胃或小肠上端的药物;在小肠或结肠环境中不稳定的药物;在小肠的pH环境下溶解度低或不溶解的药物。另外,GRDDS可通过延长药物在胃内的停留时间,使药物在整个胃肠道的转运时间也相应地延长。GRDDS的主要类型有:胃内漂浮型、体积膨胀型、胃内伸展型、生物黏附型、高密度型及其他延迟胃排空的系统,其中后2类的应用比较少,对前4类的研究和应用相对较多。1胃内漂浮型滞留系统胃内漂浮型给药系统是根据流体动力学平衡(HBS)原理设计,是由药物和一种或多种亲水凝胶骨架材料及附加剂制成的胶囊剂、片剂或其他剂型。口服遇胃液后,外层凝胶膨胀,在制剂表面形成一层凝胶屏障,防止骨架水化速度过快,维持骨架密度小于胃内容物密度(1.0041.01),而漂浮于胃液上,使其不受胃排空影响,成为长