二级圆锥圆柱齿轮减速器-机电一体化毕业论文.doc

上传人:知****量 文档编号:86253504 上传时间:2023-04-14 格式:DOC 页数:42 大小:1.55MB
返回 下载 相关 举报
二级圆锥圆柱齿轮减速器-机电一体化毕业论文.doc_第1页
第1页 / 共42页
二级圆锥圆柱齿轮减速器-机电一体化毕业论文.doc_第2页
第2页 / 共42页
点击查看更多>>
资源描述

《二级圆锥圆柱齿轮减速器-机电一体化毕业论文.doc》由会员分享,可在线阅读,更多相关《二级圆锥圆柱齿轮减速器-机电一体化毕业论文.doc(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、湖北工业大学商贸学院毕业论文机电一体化专科三班目 录一、设计任务书2二、传动方案的拟定3三、电动机的选择31.选择电动机的类型32.选择电动机功率33.确定电动机转速4四、传动比的计算及分配41.总传动比42.分配传动比4五、传动装置运动、动力参数的计算41.各轴转速42.各轴功率43.各轴转矩4六、 传动件的设计计算51.高速级锥齿轮传动的设计计算52.低速级斜齿圆柱齿轮的设计计算8七、 齿轮上作用力的计算12八、 减速器转配草图的设计14九、 轴的设计计算141.高速轴的设计与计算14 2.中间轴的设计与计算193.低速轴的设计计算25十、减速器箱体的结构尺寸29十一、润滑油的选择与计算3

2、0十二、装配图和零件图31十三、Pro/E虚拟装配及造型32十四、参考文献40一、设计任务书班级 10机电专三班 学号1025112344 姓名 潘东 一、设计题目:设计圆锥圆柱齿轮减速器设计铸工车间的型砂运输设备。该传送设备的传动系统由电动机减速器运输带组成。每日二班工作。 (图1)1电动机;2联轴器;3减速器;4鼓轮;5传送带二、原始数据:传送带拉力F(KN)传送带速度V(m/s)鼓轮直径D(mm)使用年限(年)4.00.8528010三、设计内容和要求:1.编写设计计算说明书一份,其内容通常包括下列几个方面:(1)传动系统方案的分析和拟定以及减速器类型的选择;(2)电动机的选择与传动装置

3、运动和动力参数的计算;(3)传动零件的设计计算(如除了传动,蜗杆传动,带传动等);(4)轴的设计计算;(5)轴承及其组合部件设计;(6)键联接和联轴器的选择及校核;(7)减速器箱体,润滑及附件的设计;(8)装配图和零件图的设计;(9)校核;(10)轴承寿命校核;(11)设计小结;(12)参考文献;(13)致谢。 二、传动方案的拟定运动简图如下:(图2)由图可知,该设备原动机为电动机,传动装置为减速器,工作机为型砂运输设备。减速器为两级展开式圆锥圆柱齿轮的二级传动,轴承初步选用深沟球轴承。联轴器2选用凸缘联轴器,8选用齿形联轴器。三、电动机的选择电动机的选择见表1计算项目计算及说明计算结果1.选

4、择电动机的类型根据用途选用Y系列三相异步电动机 2.选择电动机功率 运输带功率为 Pw=Fv/1000=4000*0.85/1000 Kw=3.4Kw 查表2-1,取一对轴承效率轴承=0.99,锥齿轮传动效率锥齿轮=0.96,斜齿圆柱齿轮传动效率齿轮=0.97,联轴器效率联=0.99,得电动机到工作机间的总效率为总=4轴承锥齿轮齿轮2联=0.994*0.96*0.97*0.992=0.88 电动机所需工作效率为 P0= Pw/总=3.4/0.88 Kw=3.86Kw 根据表8-2选取电动机的额定工作功率为Ped=4KwPw=3.4Kw总=0.88 P0=3.86KwPed=4Kw 3.确定电动

5、机转速输送带带轮的工作转速为 nw=(1000*60V)/d=1000*60*0.85/*280r/min=58.01r/min由表2-2可知锥齿轮传动传动比i锥=23,圆柱齿轮传动传动比i齿=36,则总传动比范围为 i总=i锥i齿=23*(36)=618电动机的转速范围为n0=nwi总58.01*(618)r/min=348.061044.18r/min 由表8-2知,符合这一要求的电动机同步转速有750r/min、1000r/min考虑到1000r/min接近上限,所以本例选用750r/min的电动机,其满载转速为720r/min,其型号为Y160M1-8nw=58.01r/minnm=7

6、20r/min四、传动比的计算及分配传动比的计算及分配见表2计算项目计算及说明计算结果1.总传动比i=nm/nw=720/58.01=12.41i=12.412.分配传动比高速级传动比为 i1=0.25i=0.25*12.41=3.10为使大锥齿轮不致过大,锥齿轮传动比尽量小于3,取i1=2.95低速级传动比为 i2=i/i1=12.41/2.95=4.21i1=2.95i2=4.21五、传动装置运动、动力参数的计算传动装置运动、动力参数的计算见表3计算项目计算及说明计算结果1.各轴转速n0=720r/minn1=n0=720r/minn2=n1/i1=720/2.95r/min=244.07

7、r/minn3=n2/i2=244.07/4.21r/min=57.97r/minnw=n3=57.97r/minn1=n0=720r/minn2=244.07r/minnw=n3=57.97r/min2.各轴功率p1=p0联=3.86*0.99kw=3.82kwP2=p11-2=p1轴承锥齿=3.82*0.99*0.96kw=3.63kwP3=p22-3=p2轴承直齿=3.63*0.99*0.97kw=3.49kwPw=p33-w=p3轴承联=3.49*0.99*0.99kw=3.42kwp1=3.82kwP2=3.63kwP3=3.49kwPw=3.42kw3.各轴转矩T0=9550p0/

8、n0=9550*3.86/720Nmm=51.20NmT1=9550p1/n1=9550*3.82/720Nmm=50.67NmT2=9550p2/n2=9550*3.63/244.07Nmm=142.04NmT3=9550p3/n3=9550*3.49/57.97Nmm=574.94NmTw=9550pw/nw=9550*3.42/57.97Nmm=563.41NmT0=51.20NmT1=50.67NmT2=142.04NmT3=574.94NmTw=563.41Nm六、 传动件的设计计算 一、高速级锥齿轮传动的设计计算锥齿轮传动的设计计算见表4 计算项目计算及说明计算结果1.选择材料、热

9、处理方式和公差等级 考虑到带式运输机为一般机械,大、小锥齿轮均选用45钢,小齿轮调质处理,大齿轮正火处理,由表8-17得齿面硬度HBW1=217255,HBW2=162217.平均硬度HBW1=236,HBW2=190.HBW1-HBW2=46.在3050HBW之间。选用8级精度。45钢小齿轮调质处理大齿轮正火处理8级精度2.初步计算传动的主要尺寸因为是软齿面闭式传动,故按齿面接触疲劳强度进行设计。其设计公式为d11) 小齿轮传递转矩为T1=506702) 因v值未知,Kv值不能确定,可初步选载荷系数Kt=1.33) 由表8-19,查得弹性系数ZE=189.84) 直齿轮,由图9-2查得节点区

10、域系数ZH=2.55) 齿数比=i1=2.956) 取齿宽系数=0.37) 许用接触应力可用下式公式 由图8-4e、a查得接触疲劳极限应力为 小齿轮与大齿轮的应力循环次数分别为N1=60n1aLh=60*720*1*2*8*250*10=1.728*109N2=N1/i1=1.728*109/2.95=5.858*108由图8-5查得寿命系数ZN1=1,ZN2=1.05;由表8-20取安全系数SH=1,则有取 初算小齿轮的分度圆直径d1t,有 d1t69.78mm3.确定传动尺寸(1)计算载荷系数 由表8-1查得使用系数KA=1.0,齿宽中点分度圆直径为 dm1t=d1t(1-0.5)=69.

11、78*(1-0.5*0.3)mm=59.313mm故vm1=dm1tn1/60*1000=*59.313*720/60*1000m/s=2.23m/s由图8-6降低1级精度,按9级精度查得动载荷系Kv=1.19,由图8-7查得齿向载荷分配系数K=1.13,则载荷系数K=KAKvK=1.0*1.19*1.13=1.34(2) 对d1t进行修正 因K与Kt有较大的差异,故需对Kt计算出的d1t进行修正 ,即 d1=69.78=70.485mm(3) 确定齿数 选齿数Z1=23,Z2=uZ1=2.95*23=67.85,取Z2=68,则,在允许范围内(4) 大端模数m ,查表8-23,取标准模数m=

12、3.5mm(5) 大端分度圆直径为 d1=mZ1=3.5*23mm=80.5mm70.485 d2=mZ2=3.5*68mm=238mm(6) 锥齿距为 R=(7) 齿宽为 b=0.3*70.374mm=21.112mm 取b=25mm d1=70.485mm Z1=23 Z2=57m=3.5mmd1=80.5mmd2=238mmR=70.374mmb=25mm4.校核齿根弯曲疲劳强度 齿根弯曲疲劳强度条件为 (1) K、b、m和同前(2) 圆周力为 Ft=(3) 齿形系数YF和应力修正系数YS 即当量齿数为 由图8-8查得YF1=2.65,YF2=2.13,由图8-9查得YS1=1.58,Y

13、S2=1.88(4) 许用弯曲应力 由图8-4查得弯曲疲劳极限应力为 由图8-11查得寿命系数YN1=YN2=1,由表8-20查得安全系数SF=1.25, 满足齿根弯曲强度5.计算锥齿轮传动其他几何尺寸ha=m=3.5mmhf=1.2m=1.2*3.5mm=4.2mmC=0.2m=0.2*3.5mm=0.7mda1=d1+2mcos=80.5+2*3.5*0.9474mm=87.132mmda2=d2+2mcos=238+2*3.5*0.3201mm=240.241mmdf1=d1-2.4mcos=80.5-2.4*3.5*0.9474mm=72.542mmdf2=d2-2.4mcos=238

14、-2.4*3.5*0.3201mm=235.311mmha=3.5mmhf=4.2mmC=0.7mda1=87.132mmda2=240.241mmdf1=72.542mmdf2=235.311mm 二、低速级斜齿圆柱齿轮的设计计算 斜齿圆柱齿轮的设计计算见表5计算项目计算及说明计算结果1.选择材料、热处理方式和公差等 大、小锥齿轮均选用45钢,小齿轮调质处理,大齿轮正火处理,由表8-17得齿面硬度HBW1=217255,HBW2=162217.平均硬度HBW1=236,HBW2=190.HBW1-HBW2=46.在3050HBW之间。选用8级精度。45钢小齿轮调质处理大齿轮正火处理8级精度2

15、.初步计算传动的主要尺寸因为是软齿面闭式传动,故按齿面接触疲劳强度进行设计。其设计公式为1) 小齿轮传递转矩为T2=1460402) 因v值未知,Kv值不能确定,可初步选载荷系数Kt=1.43) 由表8-19,查得弹性系数ZE=189.84) 初选螺旋角,由图9-2查得节点区域系数ZH=2.465) 齿数比=i=4.216) 查表8-18,取齿宽系数=1.17) 初选Z3=23,则Z4=uZ3=4.21*23=96.83,取Z4=97则端面重合度为 = =1.67轴向重合度为由图8-13查得重合度系数8) 由图11-2查得螺旋角系数Z=0.999) 许用接触应力可用下式计算 由图8-4e、a查

16、得接触疲劳极限应力为 小齿轮与大齿轮的应力循环次数分别为N3=60n2aLh=60*244.07*1*2*8*250*10=5.86*108N4=N3/i2=5.86*108/4.21=1.39*108由图8-5查得寿命系数ZN3=1.05,ZN4=1.13;由表8-20取安全系数SH=1.0,则有 取初算小齿轮的分度圆直径d3t,得 =66.59mmZ3=23Z4=97d3t66.59mm3.确定传动尺寸(1)计算载荷系数 由表8-21查得使用系数KA=1.0因=0.85m/s,由图8-6查得动载荷系数Kv=1.08,由图8-7查得齿向载荷分配系数K=1.11,由表8-22查得齿向载荷分配系

17、数K=1.2,则载荷系数为 K=KAKvKK=1.0*1.08*1.11*1.2=1.44(2) 对d3t进行修正 因K与Kt有较大的差异,故需对Kt计算出的d3t进行修正,即 =67.22mm(3) 确定模数mn mn=按表8-23,取mn=3mm(4) 计算传动尺寸 中心距为 =184.03mm取整,螺旋角为 因值与初选值相差不大,故对与有关的参数无需进行修正 则可得, b4=78mm b3=85mm K=1.44mn=3mma=184mmd3=70.531mmd4=297.455mmb4=78mmb3=85mm4.校核齿根弯曲疲劳强度 齿根弯曲疲劳强度条件为 1) K、T3、mn和d3同

18、前2) 齿宽b=b4=78mm3) 齿形系数YF和应力修正系数YS。当量齿数为 由图8-8查得YF3=2.62,YF4=2.24;由图8-9查得YS3=1.59,YS4=1.824) 由图8-10查得重合度系数5) 由图11-23查得螺旋角系数6) 许用弯曲应力为 由图8-4f、b查得弯曲疲劳极限应力由图8-11查得寿命系数YN3=YN4=1,由表8-20查得安全系数SF=1.25,故=63.93Mpa20.58+20.58*(0.030.05)mm=21.1921.61mmdmin=20.58mm4. 结构设计 (1) 轴承部件的结构设计 为方便轴承部件的装拆,减速器的机体采用剖分式结构,该

19、减速器发热小,轴不长,故 轴承采用两端固定方式。按轴上零件的安装顺序,从最细处开始设计(2) 联轴器与轴段 轴段 上安装联轴器,此段设计应与联轴器的选择设计同步进行。为补偿联轴器所联接两轴的安装误差,隔离振动,选用弹性柱销联轴器。查表8-37,取载荷系数KA=1.5,计算转矩为 Tc=KAT1=1.5*50670Nmm=76005Nmm 由表8-38查得GB/T5014-2003中的LX1型联轴器符合要求:公称转矩为250Nmm,许用转速8500r/min,轴孔范围为1224mm。考虑到d120.58mm,取联轴器孔直径为22mm,轴孔长度L联=52mm,Y型轴孔,A型键,联轴器从动端代号为L

20、X1 22*52GB/T50142003,相应的轴段 的直径d1=22mm。其长度略小于孔宽度,取L1=50mm(3) 轴承与轴段和的设计 在确定轴段的轴径时,应考虑联轴器的轴向固定及密封圈的尺寸。 若联轴器采用轴肩定位,轴肩高度h=(0.070.1)d1=(0.070.1)*30mm=2.13mm。轴段的轴径d2=d1+2*(2.13)mm=34.136mm,其值最终由密封圈确定。该处轴的圆周速度均小于3m/s,可选用毡圈油封,查表8-27初选毡圈35JB/ZQ46061997,则d2=35mm,轴承段直径为40mm,经过计算,这样选取的轴径过大,且轴承寿命过长,故此处改用轴套定位,轴套内径

21、为28mm,外径既要满足密封要求,又要满足轴承的定位标准,考虑该轴为悬臂梁,且有轴向力的作用,选用圆锥滚子轴承,初选轴承30207,由表9-9得轴承内径d=35mm,外径D=72mm,宽度B=17mm,T=18.25mm,内圈定位直径da=42mm,外径定位Da=65mm,轴上力作用点与外圈大端面的距离a3=15.3mm,故d2=35mm,联轴器定位轴套顶到轴承内圈端面,则该处轴段长度应略短于轴承内圈宽度,取L2=16mm。该减速器锥齿轮的圆周速度大于2m/s,故轴承采用油润滑,由齿轮将油甩到导油沟内流入轴承座中。通常一根轴上的两个轴承取相同的型号,则d4=35mm,其右侧为齿轮1的定位轴套,

22、为保证套筒能够顶到轴承内圈右端面,该处轴段长度应比轴承内圈宽度略短,故取L4=16mm(4) 轴段的设计 该轴段为轴承提供定位作用,故取该段直径为轴承定位轴肩直径,即d3=42mm,该处长度与轴的悬臂梁长度有关,故先确定其悬臂梁长度(5) 齿轮与轴段的设计 轴段上安装齿轮,小锥齿轮所处的轴段采用悬臂结构,d5应小于d4,可初定d5=32mm小锥齿轮齿宽中点分度圆与大端处径向端面的距离M由齿轮的结构确定,由于齿轮直径比较小,采用实心式,由图上量得M=32.9mm,锥齿轮大端侧径向端面与轴承套杯端面距离取为,轴承外圈宽边侧距内壁距离,即轴承套杯凸肩厚C=8mm,齿轮大端侧径向端面与轮毂右端面的距离

23、按齿轮结构需要取为56mm,齿轮左侧用轴套定位,右侧采用轴端挡圈固定,为使挡圈能够压紧齿轮端面,取轴与齿轮配合段比齿轮毂孔略短,差值为0.75mm,则 L5=56+C+T-L4-0.75=(56+10+8+18.25-16-0.75)mm=75.5mm(6) 轴段与轴段的长度 轴段的长度除与轴上的零件有关外,还与轴承端盖等零件有关。由表4-1可知,下箱座壁厚=0.025a+3mm=0.025*184+3mm=7.6mm,取壁厚,R+a=70.374+184=254.374mm600mm,取轴承旁联接螺栓为M20,箱体凸缘连接螺栓为M16,地脚螺栓为,则有轴承端盖连接螺钉为,取其值为M10,由表

24、8-30可取轴承端盖凸缘厚度为Bd=12mm;取端盖与轴承座间的调整垫片厚度为;告诉轴承端盖连接螺钉,查表8-29取螺栓GB/T5781 M1035;其安装基准圆直径远大于联轴器轮毂外径,此处螺钉的拆装空间足够,取联轴器毂孔端面距轴承端盖表面距离K=10mm,为便于结构尺寸取整,轴承端盖凸缘安装面与轴承左端面的距离取为l4=25.5mm,取轴段端面与联轴左端面的距离为1.75mm则有L1=L联+K+Bd+l4+T-L2-1.75mm=(62+10+12+25.5+18.25-16-1.75)mm=110mm 轴段段的长度与该轴的悬臂长度l3有关。小齿轮的受力作用点与右端轴承对轴的力作用点间的距

25、离为 =M+1+C+a3=(32.9+10+8+15.3)mm=66.2mm则两轴承对轴的力作用点间的距离为 =(22.5)l3=(22.5)*66.2mm=132.4165.5mm =l2+2a3-2T=(132.4165.5)+2*15.36-2*18.25mm=126159.1mm取L3=130mm,则有=l3+2T-2a3=130+2*18.25-2*15.3mm=135.9mm在其取值范围内,合格(7) 轴段 力作用点与左轴承对轴力作用点的间距由图12-4可得=L1+L2-T+a3-31+1.75=110+16-18.25+15.3-31+1.75mm=93.8mmd1=22mmL1

26、=50mmd2=35mmL2=16mmd4=35mmL4=16mmd3=42mmd5=32mmL5=75.5mmL1=110mml3=66.2mmL3=130mml2=135.9mml1=93.8mm5.键连接 带轮与轴段 间采用A型普通平键连接,查表8-31取其型号为键856 GB/T10961990,齿轮与轴段间采用A型普通平键连接,型号为键1063 GB/T109619906.轴的受力分析 (1)画轴的受力简图 轴的受力简图如图5所示 (2)计算支承反力 在水平面上为 R2H=Fr1+R1H=510.3+218.3N=728.6N在垂直平面上为轴承1的总支承反力为轴承2的总支承反力为(3

27、) 画弯矩图 弯矩图如图5c、d、e所示在水平面上,a-a剖面为 MaH=-R1Hl2=-218.3*135.9Nmm=-29667Nmmb-b剖面左侧为在垂直平面上为合成弯矩a-a剖面为 b-b剖面左侧为(4)画转矩图 转矩图如图5f所示,T1=50670NmmR1H=218.3NR2H=728.6NR1v=721.4NR2V=2202.4NR1=753.7NR2=2319.8NMa=102428.7NmmMb=5901.7NmmT1=50670Nmm7.校核轴的强度因a-a剖面弯矩大,同时作用有转矩,a-a剖面为危险面其抗弯截面系数为 抗扭截面系数为 弯曲应力为 扭剪应力为 按弯扭合成强度进行校核计算,对于单向转动的转轴,转矩按脉动循环处理,故取折合系数则当量应力为 由表8-26查得45钢调质处理抗拉强度极限,则由表8-32查得轴的许用弯曲应力强度满足要求轴的强度满足要求8.校核键连接的强度联轴器处键连接

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁