北师大版数学七年级下册2.1《两条直线的位置关系》(第1课时)教案.pdf

上传人:g****s 文档编号:85991254 上传时间:2023-04-13 格式:PDF 页数:3 大小:141.09KB
返回 下载 相关 举报
北师大版数学七年级下册2.1《两条直线的位置关系》(第1课时)教案.pdf_第1页
第1页 / 共3页
北师大版数学七年级下册2.1《两条直线的位置关系》(第1课时)教案.pdf_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《北师大版数学七年级下册2.1《两条直线的位置关系》(第1课时)教案.pdf》由会员分享,可在线阅读,更多相关《北师大版数学七年级下册2.1《两条直线的位置关系》(第1课时)教案.pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 第 1 页 共 3 页 世界数学名题哥尼斯堡七桥问题 18 世纪时,欧洲有一个风景秀丽的小城哥尼斯堡(今俄罗斯加里宁格勒),那里的普莱格尔河上有七座桥。将河中的两个岛和河岸连结,城中的居民经常沿河过桥散步,于是有人提出了一个问题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。这就是哥尼斯堡七桥问题,一个著名的图论问题。1727年在欧拉 20 岁的时候,被俄国邀请请去圣彼得堡(原列宁格勒)的科学院做研究。他的德国朋友告诉了他这个曾经令许多人困惑的问题。欧拉并没有跑到哥尼斯堡去走走。他把这个难题化成了这样的问题来看:把河岸和小

2、岛缩成一点,桥化为边,于是“七桥问题”就转化成下图中所画图形的一笔画问题了,这个图如果能够一笔画成的话,对应的“七桥问题”也就解决了。欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。接下来,欧拉运用图中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的 7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!经过研究,欧拉发现了一笔

3、画的规律。他认为,能一笔画的图形必须是连通图。连通图就指一个图形各部分总是有边相连的,这道题中的图就是连通图。但是,不是所有的连通图都可以一笔画的。能否一笔画是由图的奇、偶点的数目来决定的。那么什么叫奇、偶点呢?与奇数(单数)条边相连的点叫做奇点;与偶数(双数)条边相连的点叫做偶点。如下图中的、为奇点,、为偶点。第 2 页 共 3 页 1 凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。例如下图都是偶点,画的线路可以是:2 凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。例如下图的线路是

4、:3 其他情况的图都不能一笔画出。欧拉后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一 第 3 页 共 3 页 笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 文案大全

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁