《桥梁施工控制网的布设教案.pdf》由会员分享,可在线阅读,更多相关《桥梁施工控制网的布设教案.pdf(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、兰州资源环境职业技术学院教师授课教案 学习情境 学习情境二:桥梁工程施工测量 任务名称 任务四:桥梁施工控制网的布设 授课时间 年 月 日 第 周 授课教师 授课班级 授课时数 8 学时 授课方法 学训 教学内容 1.根据初拟方案,进行现场踏勘,根据不同地形特点和实际情况,进行控制网的布设,选点埋点;2.桥梁平面控制测量;3.桥梁高程控制测量;知识目标 1。认识控制网的布设形式,熟悉控制网布设的特点;2。掌握桥梁施工平面控制网精度要求、加密和复测;3.学习平面控制网坐标系统;4.学习水准测量,掌握水准点的布设和测量规范;5。掌握跨河水准测量.技能目标 1。现场踏勘之后,能够;能够独立的对现场进
2、行选点埋点;2.根据需要收集与桥梁施工测量相关的已有的测量资料;3。布设桥梁控制网,掌握水准测量;教学重点和 难 点 1.控制网的布设;2。技术设计的依据及原则;3。技术设计书的编写。导入新课 1.相关项目技术设计书范文;巩固复习 1。技术设计基本原则;2.技术设计书编写内容;布置作业 根据设计书的技术要求确定出桥梁施工控制网 教学效果分析 教学步骤、教学内容和教学方法 备 注 一、咨 询【参考资料】技术设计书编写原则规范、相似桥梁施工测量设计书实例等。【工程资料分析】黄河公路大桥,是国家重点高速公路工程跨越黄河的特大型桥梁,设计桥长 7000 多米,桥宽 34。5m,双向六车道.桥型分三部分
3、:主桥 1 为跨度 125 m 的斜拉桥,主桥 2 为跨度为 50 m 的 T 型桥梁,引桥为跨度 35 m 的组合箱梁桥。测区位于黄河中下游平原地区,由南向北横跨黄河,东距某国道黄河大桥约 5km,地理位置为东经 114、北纬 34,测区属于平原地区,黄河由西向东从测区中央流过,黄河两岸各有一条东西向黄河大堤,大堤两侧有树木,通视困难,滩区则通视良好。【任务内容及要求】1收集所需图纸资料和测区已有的测量控制点资料,现场踏勘。选点埋点,进行控制网的布设.2桥梁平面控制测量,首先建立 GPS 首级平面控制网,在进行导线测量,对其 GPS 控制网进行加密。3桥梁高程控制测量,采用水准测量和光电三角
4、高程测量。掌握跨河 水准测量。【相关知识】一、桥梁施工控制网概述 桥梁施工控制网分为施工平面控制网和施工高程控制网两部分.在建立控制网时,既要考虑三角网本身的精度,即图形强度,又要考虑以后施工的需要。所以,在布网之前应对桥梁的设计方案、施工方法、施工机具及场地布置、桥址地形及周围的环境条件、精度要求等方面进行研究,然后在桥址地形团图上拟订布网方案,在现场选定 点位。点位应选在施工范围以外,且不能位于淹没或土质松软的地区。控制网应力求满足下列要求:(1)图形应具有足够的强度,使测得的桥轴线(桥的中心线)长度的精度能满足施工要求,并能利用这些三角点以足够的精度放样桥墩.当主网的三角点数目不能满足施
5、工需要时,能方便地增设插点。在满足精度和施工要求的前提下,图形应力求简单。(2)为使控制网与桥轴线连接起来,在河流两岸的桥轴线上应各设个三角点,三角点离桥台的设计位置不应太远,以保证桥台的放样精度。放样桥墩时,仪器可安置在桥轴线上的三角点上进行交会,以减小横向误差.(3)控制网的边长一般在 0。51.5 倍河宽的范围内变动。由于控制网的边长较短,可直接丈量控制网的一条边作为基线。基线长度不宜小于桥轴线长度的 0.7 倍,一般应在两岸各设一条,以提高三条线的精度及增加检核条件.通常丈量两条基线边,两岸各一条.基线场地应选在土质坚实、地势平坦的地段。(4)三角点均应选在地势较高、土质坚实稳定、便于
6、长期保存的地方,而且三角点间的通视条件良好.尽可能避免旁折光和地面折光的影响,尽量不造标。(5)桥梁施工的高程控制点即水准点,每岸至少埋设 3 个,并与国家水准点联测。水准点应采用永久性的固定标石,也可利用平面控制点的标石。同岸的 3 个水准点,其中两个应埋设在施工范围以外,以免受到破坏;另一个应埋没在施工区内,以便直接将高程传递到所 需要的地方.同时还应在每一个桥台、桥墩附近设立一个临时施工水准点。二、桥梁施工平面控制网 1.桥梁施工平面控制网的布设形式 测量仪器的更新、测量方法的改进,特别是高精度全站仪和 GPS 的普及,给桥梁平面控制网的布设带来很大的灵活性,也使网形趋于简单化。建立桥梁
7、施工平面控制网的方法较多,根据桥梁的大小、精度要求和地形条件,桥梁施工平面控制网的网形布设有以下几种形式:桥渡两岸,当一岸较为平坦,另一岸较为陡峻时,可布设为双三角形,如图 41(a);当两岸均较为平坦时,可布设为大地四边形,如图 4-1(b)。这两种网形适用于桥长较短且需要交会的水中墩台数量不多的情况。对于大型、特大桥可采用如图 4-1(c)、(d)所示的双大地四边形。这种网形图形强度高,控制点数量多,不但有利于提高精度,而且便于墩台中心测设。我国在长江上修建的基座大桥,大多采用这种网形。图 4-1(e)为利用江河中的沙洲建立控制网的情况。特大型桥通常有较长的引桥,因此可将桥梁施工平面控制网
8、再向两端延伸,增加几个点构成多个大地四边形网或者从桥轴线点引测敷设一条光电测距精密导线,导线宜采用闭合环。对于大型和特大型的桥梁施工平面控制网,自 20 世纪 80 年代以来已广泛采用边角网或测边网的形式,并按自由网严密平差。无论施工平面控制网布设采用何种形式,首先控制网的精度必须满足施工放样的要求。其次控制点应尽可能便于施工放样,且能长期稳定而不受施工的干扰。一般中、小型桥梁控制点采用地面标石,大型或特大型桥梁控制点应采用配有强制对中装置的固定观测墩或金 属支架。2.桥梁控制网精度的确定 桥梁施工控制网是放样桥台、桥墩的依据.若将控制网的精度定得过高,虽能满足施工的要求,但控制网施测困难,既
9、费时又费工;控制网的精度过低,很难满足施工的要求。目前常用的确定控制网精度有两种,即按桥式、桥长(上部结构)设计和按桥墩中心点位误差(下部结构)设计。1)按桥式确定控制网的精度 按桥式确定控制网精度的方法是根据跨越结构的架设误差(它与桥长、跨度大小及桥式有关)来确定桥梁施工控制网的精度.桥梁跨越结构的形式一般分为简支梁和连续梁.简支梁在一端桥墩上设固定支座,在其余桥墩上设活动支座,如图 42 所示。在钢梁的架设过程中,它的最后长度误差来源于两部分:一是杆件加工装配时的误差;二是安装支座的误差.图 4-2 桥梁跨越结构的形式 根据铁路钢桥制造规则的有关规定,钢衍梁节间长度制造容许误差为mm2,两
10、组孔距误差为mm5.0,则每一节间的制造和拼装误差为mml12.225.022.当杆件长 16m 时,其相对容许误差为 754711600012.2ll 由 n 根杆件铆接的桁式钢梁的长度误差为 2lnL 设固定支座安装容许误差为,则每跨钢梁安装后的极限误差为 2222lnLd (41)根据铁路钢轨拼装及架设施工技术规则,值可根据固定支座中心里程的纵向容许 偏差大小以及梁长和桥式来确定,目前一般取mm7。由上分析,即可根据各桥跨求得其全长的极限误差 22221.NdddL (42)式中 N桥的跨数。当等跨时,有 NdL 取21的极限误差为中误差,则全桥轴线长的相对中误差为 LLLmL21 表
11、4-1 是根据上述铁路规范列举出的以桥式为主结合桥长来确定控制 网的精度要求;表 42 是根据公路桥涵施工技术规范列举出的以桥长为主来确定控制网放样的精度。显而易见,铁路规范比公路规范要求高。在实际应用中,尤其是对特大型公路桥,应结合工程需要确定首级网的等级和精度。2)按桥墩放样的容许误差确定平面控制网的精度 在桥墩的施工中,从基础至墩台顶部的中心位置要根据施工进度随时放样确定,由于放样的误差使得实际位置与设计位置存在着一定的偏差;根据桥墩设计理论,当桥墩中心偏差在mm20内时,产生的附加力在容许范围内。因此,目前在铁路测量技术规则中,对桥墩支座中心点与设计里程纵向容许偏差作了规定,对于连续梁
12、和跨度大于 60m 的简支梁,其容许偏差为mm10。表 4-1 铁路桥位三角网精度要求 等 级 测角中误差/()桥轴线相对中误差 最弱边相对中误差 一 0。7 1/175000 1/150000 二 1。0 1/125000 1/100000 三 1.8 1/75000 1/60000 四 2。5 1/50000 1/40000 五 4.0 1/30000 1/25000 表 4-2 公路桥位三角网精度要求 等级 桥轴线桩间 距离/m 测角中误差/()桥轴线 相对中误差 基 线 相对中误差 三角形最大闭合差/()二 5000 1.0 1/130000 1/260000 3.5 三 200150
13、00 1。8 1/70000 1/140000 7。0 四 10012000 2。5 1/40000 1/80000 9.0 五 5011000 5.0 1/20000 1/40000 15.0 六 201500 10.0 1/10000 1/20000 30。0 七 200 20.0 1/5000 1/10000 60.0 上述容许偏差,可作为确定桥梁施工控制网必要精度的依据。在桥墩的施工放样过程中,引起桥墩点位误差的因素包括两部分:控制测量过程中的误差和放样测量过程中的误差.它们可用下式表示:222放控mm (4-3)式中 控m-控制点误差对放样点处产生的影响;放m放样误差.进行控制网的精
14、度设计,就是根据的实际施工条件,按一定的误差分配原则,先确定控m和放m的关系,再确定具体的数值大小。结合桥梁施工的具体情况,在建立施工控制网阶段,一般施工尚未展开,不存在施工干扰,有比较充裕的时间和条件进行多余观测以提高控制网的观测精度;而在施工放样时,现场测量条件差、干扰大、测量速度要求快,测量放样的精度受到限制。因此,控制点误差控m远小于放样误差放m.如果取222.0放控mm,按式(4-3)可求得:4.0控m。当桥墩中心测量精度要求mm20时,mmm8控。当以此作为控制网的最弱边边长精度要求时,即可根据设计控制网的平均边长(主轴线长度,或河宽)确定施工肋网的相对边长精度要求。例如,南京长江
15、二桥南汉桥要求桥轴线边长相对中误差1/180000,最弱边边长相对中误差1130000,起始边边长相对中误差1/300000.3。平面控制网的坐标系统 1)国家坐标系 桥梁建设中都要考虑与周边道路的衔接,因此平面控制网应首先选用国家统一坐标系统。但在大型和特大型桥梁建设中,选用国家统一坐标系统时应具备的条件是:(1)桥轴线位于高斯正形投影统一的 3带中央子午线附近;(2)桥址平均高程面应接近于国家参考椭球面或平均海水面。2)抵偿坐标系 由计算可知,当桥址区的平均高程大于 160m 或其桥轴线平面位置离开统一的 3的带中央子午线东西方向的距离(横坐标)大于 45km 时,其长度投影变形值将会超过
16、 25mmkm(140000)。此时,对于大型或特大型桥梁施工来说,仍采用国家统一坐标系统就不适宜了.通常的做法是人为地改变归化高程,使距离的高程归化值与高斯投影的长度归化值相抵偿,但不改变统一的 3带中央子午线进行的高斯投影计算的平面直角坐标系,这种坐标系称为抵偿坐标系。所以,在大型桥梁施工中,当不具备使用国家统一坐标系时,通常采用抵偿坐标系。3)桥轴坐标系 在特大型桥梁的主桥施工中,尤其是桥面钢构件的施工,定位精度要求很高,一般小于 5mm,此时选用国家统一坐标系和抵偿坐标系都不适宜,通常选用高斯正形投影任意带(桥轴线的经度作为中央子午线)平面直角坐标系,称为桥轴坐标系,主高程归化投影面为
17、桥面 高程面,桥轴线作为 x 轴。在实际作业中,有时需要同时采用几套坐标系。比如,在南京长江二桥建设中就同时使用了桥轴坐标系、抵偿坐标系和北京 54 坐标系:在主桥上使用桥轴坐标系,引桥及引线使用抵偿坐标系,而在与周边接线及航道上则使用北京 54 坐标系.4.平面控制网的加密 桥梁施工首级控制网由于受图形强度条件的限制,其岸侧边长都较长。例如,当桥轴线长度在 1500 m 左右时,其岸侧边长大约在 1000m,则当交会半桥长度处的水中桥墩时,其交会边长达到 1200 m 以上。这对于在桥梁施工中用交会法频繁放样桥墩是十分不利的,而且桥墩愈是靠近本岸,其 交会角就愈大。从误差椭圆的分析中可知,过
18、大或过小的交会角,对桥墩位置误差的影响都较大。此外,控制网点远离放样物,受大气折光、气象干扰等因素影响也增大,将会降低放样点位的精度。因此,必须在首级控制网下进行加密,这时通常是在堤岸边上合适的位置上布设几个附点作为加密点,加密点除考虑其与首级网点及放样桥墩通视外,更应注意其点位的稳定可靠及精度。结合施工情况和现场条件,可以采用如下的加密方法:(1)由 3 个首级网点以 3 个方向前方交会或由 2 个首级网点以 2 个方向进行边角交会的形式加密;(2)在有高精度全站仪的条件下,可采用导线法,以首级网两端点为已知点,构成附合导线的网形;(3)在技术力量许可的情况下,也可将加密点纳入首级网中,构成
19、新的施工控制网,这对于提高加密点的精度是行之有效的。加密点是施工放样使用最频繁的控制点,且多设在施工场地范围内或附近,受施工干扰较大,临时建筑或施工机械极易造成不通视或破坏而失去效用,在整个施工期间,常常要多次加密或补点,以满足施工的需要。5。平面控制网的复测 桥梁施工工期一般都较长,限于桥址地区的条件,大多数控制点(包括首级网点和加密点)位于江河堤岸附近,其地基基础并不十分稳定,随着时间的变化,点位有可能发生变化.此外,桥墩钻孔桩施工、降水等也会引起控制点下沉和位移。因此,在施工期问,无论是首级网点还是加密点,必须进行定期复测,以确定控制点的变化情况和稳定状态,这也是确保工程质量的重要工作。
20、控制网的复测周期可以定期进行,如每半年进行一次,也可根据工程施工进度、工期,并结合桥墩中心检测要求情况确定。一般在下部结构施工期间,要对首级控制网及加密点至少进行两次复测。第一次复测宜在桥墩基础施工前期进行,以便根据精密放样或测定其墩台的承台中心位置。第二次复测宜在墩、台身施工期间进行,并宜在主要墩、台顶帽竣工前完成,以便为墩、台顶帽位置的精密测定提供依据。顶帽竣工中心即可作为上部建筑放样的依据。复测应采用不低于原测精度的要求进行。由于加密点是施工控制的常用点,在复测时通常将加密点纳入首级控制网中观测,整体平差,以提高加密点的精度.值得提出的是,在未经复测前要尽量避免采用极坐标法进行放样,如采
21、用则应有检核措施,以免产生较大的误差。无论是复测前或复测后,在施工放样中,除后视一个已知方向之外,应加测另一个已知方向(或称双后视法),以观察该测站上原有的已知角值与所测角值有无超出观测误差范围的变化,以避免在后视点距离较长且气象条件通视不甚良好时发生观测错误的影响。三、桥梁施工高程控制网 1.桥梁施工高程控制网的布设 高程控制网的精度 无论是公路桥、铁路桥或公路铁路两用桥,在放样桥梁施工高程控制网前都必须收集两岸桥轴线附近国家水准点资料。对城市桥还应收集市政工程水准点资料;对铁路及公铁两用桥铁路线路还应收集勘测或已有铁路的水准点资料包括其水准点的位置、编号、等级、采用的高程系统及其最近测量日
22、期等.桥梁高程控制网的起算高程数据是由桥址附近的国家水准点或其他已知水准点引入.这只是取得统一的高程系统,而桥梁高程控制网仍是一个自由网,不受已知高程点的约束,以保证网本身的精度。放样桥墩、台高程的精度除受施工放样误差的影响外,控制点间高差的误差亦是一个重要的影响因素,因此高程控制网必须要有足够高的精度.对于水准网,水准点之间的联测及起算高程的引测一般采用三等。跨河水准测量当跨河距离小于 800 m 时采用三等,大于 800 m 时则应采用二等。2。桥梁三角网 1)桥梁三角网的外业 桥梁三角网布设好后,就可进行外业观测与内业计算。桥梁三角网的外业主要包括角度测量和边长测量。由于桥轴线长度不同,
23、对桥轴线长度的精度要求也不同,因此三角网的测角和测边精度也有所不同。在公路桥位勘测规程中,按照桥轴线的长度,将三角网的精度等级分为六个等级,具体技术指标见表 42。角度观测一般采用方向观测法。观测时应选择距离适中、通视良好、成像清晰稳定、竖直角仰俯小、折光影响小的方向作为零方向。角度观测的测回数由三角网的等级和仪器的类型而定.具体规定见表4-3。表 4-3 三角网等级和仪器类型及测回数 仪器类型 不同等级的测回数 二 三 四 五 六 七 1J 9 6 4 2 1J 12 9 6 6 4 2 1J 12 9 6 4 铟瓦线尺丈量是最精密的测距方法,用于二、三等网的基线丈量。但组织这样一次丈量是极
24、其困难的。目前已有高精度的基线光电测距仪可用于二、三等同基线测量,为测距工作带来诸多方便.三等以下则可用一般光电测距仪测定,也可用钢尺精密量距的方法。直接 丈量的测回数为 14.桥梁三角网一般只测两条基线,其他边长则根据基线及角度推算。在平差中,由于只对角度进行调整而将基线作为固定值,因此基线测量的精度应远高于测角精度而使基线误差可忽略不计。所以,基线测量精度一般应比桥轴线精度高出 2 倍以上。边角网一般要测部分或全部边长,平差时要与角度一起参与调整,故要求与测角精度相当即可,一般与桥轴线精度一致就能满足要求。外业工作结束后,应对观测成果进行检核。基线的相对中误差应满足相应等级控制网的要求。测
25、角误差可按三角形闭合差计算,亦应满足规范要求。当有极值条件或基线条件时,闭合差的限差按下式计算:2mw 限 (44)式中 m测角中误差,();传距角正弦对数的秒差,以对数第六位为单位。(1)桥梁三角网平差与坐标计算 桥梁控制网通常都是独立的自由网。由于对网本身点的相对位置的精度要求很高,所以即使与国家网或城市网进行联测,也只是取得坐标间的联系,平差时仍按独立的自由网计算。桥梁三角网的平差方法通常采用条件观测平差。对于二、三等三角网可采用方向平差,三等以下一般采用角度平差,视情况还可采用近似平差方法。边角网的平差亦采用条件观测平差。由于边角网的边、角均参与平差,所以除其有三角网、三边网的条件外,
26、还有边、角两类观测量共同组成边角条件。由于边和角是两类不同类型的观测值,因此需要合理确定测角和测边的权值及其比例关系,以使平差结果符合实际。桥梁控制网通常采用独立的平面直角坐标系,以桥轴线方向作为纵坐标 x 轴,而以桥轴线始端控制点的里程作为该点的 x 值。这样桥梁墩、台的设计里程即是其 x 坐标值,可为以后的放样交会计算带来方便。3。水准点的布设 水准点的选点与埋设工作一般都与平面控制网的选点与埋石工作同步进行,水准点应包括水准基点和工作基点。水准基点是整个桥梁施工过程中的高程基准,因此在选择水准点时应注意其隐蔽性、稳定性和方便性。即水准基点应选择在不致被损坏的地方,同时要特别避免地质不良、
27、过往车辆影响和易受其他振动影响的地方.此外还应注意其不既受桥梁和线路施工的影响,又要考虑其便于施工应用。在埋石时应尽量埋没在基岩上。在覆盖层较浅时,可采用深挖基坑或用地质钻孔的方法使之埋设在基岩上;在覆盖层较深时,应尽量采用加设基桩(即开挖基坑后打入若干根大木桩的方法)以增加埋石的稳定性。水准基点除了考虑其在桥梁施工期间使用之外,要尽可能做到在桥梁施工完毕交付运营后能长期用于桥梁沉降观测之用.在布设水准点时,对于桥长在 200 m 以内的大、中型桥,可在河两岸各设置一个.当桥长超过 200 m 时,由于两岸联测起来比较困难,而且水准点高程发生变化时不易复查,因此每岸至少应设置两个水准点。对于特
28、大型桥,每岸应选设不少于 3 个水准点,当能埋没基岩水准点时,每岸也应不少于 2 个水准点;当引桥较长时,应不大于 l km 设置一个水准点,并且在引桥端点附近应设有水准点。为了便于施工时使用,还可设立若干个施工水准点。水准点应根据地形条件、地质情况、使用期限和精度要求分别埋设混凝土标石、钢管标石、岩石标石、管桩标石、钻孔桩标石或基岩标石。无论采用什么样的标石,均应以凸出的铜质或不锈钢的标心.水准点应设在距桥中线 50m100m 小范围内,坚实、稳固、能够长久保留及便于引测使用的地方,且不易受施工和交通的干扰。相邻水准点之间的距离一般不大于 500 m.此外,在桥墩较高、两岸陡峭的情况下,应在
29、不同高度设置水准点,以便于放样桥墩的高程。在桥梁施工过程中,单靠水准基点难以满足施工放样的需要,因此在靠近桥墩附近再设置水准点,通常称为工作基点。这些点一般不单独埋石,而是利用平面控制网的导线点或三角网点的标志作为水准点。采用强制对中观测墩时,则是将水准标志埋没在观测墩旁边的 混凝土中.水准测量的等级、精度、限差应符合表 44 的规定。表中 R 为测段长度,L 为符合路线长度,F 为换线长度,均以千米计。表 4-4 水准测量的等级和测量精度(mm)水准测 量等级 限 差 每千米水准测量的偶然中误差 M 检测已测测段高差只差 往返测 不符值 附合路 线闭合差 环闭合差 左右路线高差不符值 二 1
30、.0 6R 4R 4L 4F 三 3.0 20R 12R 12L 12F 8R 四 5.0 30R 20R 20L 20F 14R 五 7。5 30R 30R 30L 30F 20R 在山区和丘陵地区,当平均每千米单程测站数多于 16 站时,应符合表4-5 的规定。表中 n 为两水准点间单程测站数。每公里水准测量高差中数的偶然中误差按下式计算:Rnm41 (45)式中,为测段往返测高差不符值,以 mm 计;n 为测段数。表 4-5 山区和丘陵地区水准测量限差(mm)水准测量等级 限 差 检测已测测段高差之差 往返较差、附和或环闭合差 二 1。2n 0。8n 三 4.0n 2.4n 四 6.0n
31、 4.0n 为了便于施工放样,可根据实际需要在施工地点附近设立若干个施工水准点。当桥墩较高、两岸地貌陡峭时,可在陡坡上一定的高差范围内设立施工水准点,以便于放样桥墩的高程。施工水准点的高程必须定期检测。水准测量作业开始前,必须对水准仪和水准尺按相关的项目要求进行检验。如有近期资料,可只检验圆水准器正确性和 i 角误差。二等水准测量的 i 角误差限差为15,三四等水准测量的 i 角误差限差为20.在作业过程中,应保证圆水准器轴和仪器竖轴关系正确。作业开始后的第一周内每天应检校 i 角一次,当 i 角较为稳定时,可适当延长校检时间。4.跨河水准测量 跨河水准测量是桥梁施工高程控制网放样工作中十分重
32、要的一环。当水准路线跨越较宽的河流或深谷时,其宽度往往超过了规定的视线长度,这就使得前、后视线不能相等,实测高差中包含有较大的 i 角误差影响。由于视线增长,大气垂直折光影响必然增大,加之水准标尺上的划分线在望远镜中的成像显得非常细小,甚至无法读数。这时可以采用跨河水准测量的方法.这是因为桥梁施工要求其两岸的高程系统必须是统一的,同时,桥梁施工高程精度要求高.因此,即使两岸附近都有国家或其他部门的高等级水准点资料,也必须进行高精度的跨河水准测量,使其与两岸自设水准点一起组成统一的高精度高程控制网.5。水准测量及联测 桥梁高程控制网应与路线采用同一个高程系统,因而要与路线水准点进行联测。但联测的
33、精度可略低于施测桥梁高程控制网的精度,因为它不会影响到桥梁各部高程放样的相对精度。桥梁施工高程控制网复测一般配合平面控制网复测工作一并进行。复测时应采用不低于原测精度的方法。当水中已有建成或即将建成的桥墩时,可予以利用,以缩短其跨河视线的长度.二、决策 1.教师详细讲述桥梁施工控制网的布设,注重讲述桥梁施工平面控制测量、高程控制测量,给各组分发一份相关技术设计书范本。2.在教师的引导下,组内进行探讨、通过查阅相关测量规范、分析并利用测区已有资料,结合课本相关知识,掌握技术设计的原则和技术设计书编写。3.引导学生结合范文及技术设计书编写规范完桥梁施工控制网技术设计书。三、计划 1.全班分为若干个
34、工作小组,各组成员配合讨论完成技术设计书编写;2.在教师指导下,对小组技术设计书进行评定。四、实施 1.桥梁三角网 1)桥梁三角网的外业 桥梁三角网布设好后,就可进行外业观测与内业计算。桥梁三角网的外业主要包括角度测量和边长测量.由于桥轴线长度不同,对桥轴线长度的精度要求也不同,因此三角网的测角和测边精度也有所不同.在公路桥位勘测规程中,按照桥轴线的长度,将三角网的精度等级分为六个等级,具体技术指标见表 4-2。角度观测一般采用方向观测法。观测时应选择距离适中、通视良好、成像清晰稳定、竖直角仰俯小、折光影响小的方向作为零方向。角度观测的测回数由三角网的等级和仪器的类型而定。具体规定见表43。表
35、 43 三角网等级和仪器类型及测回数 仪器类不同等级的测回数 型 二 三 四 五 六 七 1J 9 6 4 2 1J 12 9 6 6 4 2 1J 12 9 6 4 铟瓦线尺丈量是最精密的测距方法,用于二、三等网的基线丈量。但组织这样一次丈量是极其困难的。目前已有高精度的基线光电测距仪可用于二、三等同基线测量,为测距工作带来诸多方便.三等以下则可用一般光电测距仪测定,也可用钢尺精密量距的方法。直接 丈量的测回数为 14。桥梁三角网一般只测两条基线,其他边长则根据基线及角度推算。在平差中,由于只对角度进行调整而将基线作为固定值,因此基线测量的精度应远高于测角精度而使基线误差可忽略不计。所以,基
36、线测量精度一般应比桥轴线精度高出 2 倍以上。边角网一般要测部分或全部边长,平差时要与角度一起参与调整,故要求与测角精度相当即可,一般与桥轴线精度一致就能满足要求。外业工作结束后,应对观测成果进行检核。基线的相对中误差应满足相应等级控制网的要求.测角误差可按三角形闭合差计算,亦应满足规范要求.当有极值条件或基线条件时,闭合差的限差按下式计算:2mw 限 (44)式中 m-测角中误差,();传距角正弦对数的秒差,以对数第六位为单位.(1)桥梁三角网平差与坐标计算 桥梁控制网通常都是独立的自由网。由于对网本身点的相对位置的精度要求很高,所以即使与国家网或城市网进行联测,也只是取得坐标间的联系,平差
37、时仍按独立的自由网计算。桥梁三角网的平差方法通常采用条件观测平差.对于二、三等三角网可采用方向平差,三等以下一般采用角度平差,视情况还可采用近似平差方法。边角网的平差亦采用条件观测平差。由于边角网的边、角均参与平差,所以除其有三角网、三边网的条件外,还有边、角两类观测量共同组成边角条件。由于边和角是两类不同类型的观测值,因此需要合理确定测角和测边的权值及其比例关系,以使平差结果符合实际。桥梁控制网通常采用独立的平面直角坐标系,以桥轴线方向作为纵坐标 x 轴,而以桥轴线始端控制点的里程作为该点的 x 值。这样桥梁墩、台的设计里程即是其 x 坐标值,可为以后的放样交会计算带来方便。2.水准点的布设
38、 水准点的选点与埋设工作一般都与平面控制网的选点与埋石工作同步进行,水准点应包括水准基点和工作基点。水准基点是整个桥梁施工过程中的高程基准,因此在选择水准点时应注意其隐蔽性、稳定性和方便性.即水准基点应选择在不致被损坏的地方,同时要特别避免地质不良、过往车辆影响和易受其他振动影响的地方.此外还应注意其不既受桥梁和线路施工的影响,又要考虑其便于施工应用。在埋石时应尽量埋没在基岩上。在覆盖层较浅时,可采用深挖基坑或用地质钻孔的方法使之埋设在基岩上;在覆盖层较深时,应尽量采用加设基桩(即开挖基坑后打入若干根大木桩的方法)以增加埋石的稳定性。水准基点除了考虑其在桥梁施工期间使用之外,要尽可能做到在桥梁
39、施工完毕交付运营后能长期用于桥梁沉降观测之用。在布设水准点时,对于桥长在 200 m 以内的大、中型桥,可在河两岸各设置一个.当桥长超过 200 m 时,由于两岸联测起来比较困难,而且水准点高程发生变化时不易复查,因此每岸至少应设置两个水准点。对于特大型桥,每岸应选设不少于 3 个水准点,当能埋没基岩水准点时,每岸也应不少于 2 个水准点;当引桥较长时,应不大于 l km 设置一个水准点,并且在引桥端点附近应设有水准点。为了便于施工时使用,还可设立若干个施工水准点。水准点应根据地形条件、地质情况、使用期限和精度要求分别埋设混凝土标石、钢管标石、岩石标石、管桩标石、钻孔桩标石或基岩标石.无论采用
40、什么样的标石,均应以凸出的铜质或不锈钢的标心。水准点应设在距桥中线 50m100m 小范围内,坚实、稳固、能够长久保留及便于引测使用的地方,且不易受施工和交通的干扰。相邻水准点之间的距离一般不大于 500 m.此外,在桥墩较高、两岸陡峭的情况下,应在不同高度设置水准点,以便于放样桥墩的高程。在桥梁施工过程中,单靠水准基点难以满足施工放样的需要,因此在靠近桥墩附近再设置水准点,通常称为工作基点.这些点一般不单独埋石,而是利用平面控制网的导线点或三角网点的标志作为水准点。采用强制对中观测墩时,则是将水准标志埋没在观测墩旁边的 混凝土中。水准测量的等级、精度、限差应符合表 44 的规定。表中 R 为
41、测段长度,L 为符合路线长度,F 为换线长度,均以千米计。表 4-4 水准测量的等级和测量精度(mm)水准测 量等级 限 差 每千米水准测量的偶然中误差 M 检测已测测段高差只差 往返测 不符值 附合路 线闭合差 环闭合差 左右路线高差不符值 二 1.0 6R 4R 4L 4F 三 3.0 20R 12R 12L 12F 8R 四 5.0 30R 20R 20L 20F 14R 五 7。5 30R 30R 30L 30F 20R 在山区和丘陵地区,当平均每千米单程测站数多于 16 站时,应符合表4-5 的规定。表中 n 为两水准点间单程测站数。每公里水准测量高差中数的偶然中误差按下式计算:Rn
42、m41 (4-5)式中,为测段往返测高差不符值,以 mm 计;n 为测段数。表 4-5 山区和丘陵地区水准测量限差(mm)水准测量等级 限 差 检测已测测段高差之差 往返较差、附和或环闭合差 二 1。2n 0。8n 三 4.0n 2。4n 四 6.0n 4。0n 为了便于施工放样,可根据实际需要在施工地点附近设立若干个施工水准点。当桥墩较高、两岸地貌陡峭时,可在陡坡上一定的高差范围内设立施工水准点,以便于放样桥墩的高程。施工水准点的高程必须定期检测。水准测量作业开始前,必须对水准仪和水准尺按相关的项目要求进行检验.如有近期资料,可只检验圆水准器正确性和 i 角误差.二等水准测量的 i 角误差限
43、差为15,三四等水准测量的 i 角误差限差为20。在作业过程中,应保证圆水准器轴和仪器竖轴关系正确。作业开始后的第一周内每天应检校 i 角一次,当 i 角较为稳定时,可适当延长校检时间.3.跨河水准测量 跨河水准测量是桥梁施工高程控制网放样工作中十分重要的一环。当水准路线跨越较宽的河流或深谷时,其宽度往往超过了规定的视线长度,这就使得前、后视线不能相等,实测高差中包含有较大的 i 角误差影响。由于视线增长,大气垂直折光影响必然增大,加之水准标尺上的划分线在望远镜中的成像显得非常细小,甚至无法读数.这时可以采用跨河水准测量的方法.这是因为桥梁施工要求其两岸的高程系统必须是统一的,同时,桥梁施工高
44、程精度要求高。因此,即使两岸附近都有国家或其他部门的高等级水准点资料,也必须进行高精度的跨河水准测量,使其与两岸自设水准点一起组成统一的高精度高程控制网.4.水准测量及联测 桥梁高程控制网应与路线采用同一个高程系统,因而要与路线水准点进行联测。但联测的精度可略低于施测桥梁高程控制网的精度,因为它不会影响到桥梁各部高程放样的相对精度。桥梁施工高程控制网复测一般配合平面控制网复测工作一并进行。复测时应采用不低于原测精度的方法。当水中已有建成或即将建成的桥墩时,可予以利用,以缩短其跨河视线的长度.五、检序号 检查内容 标准分 评价标准 查 1 能否按时完成实训任务,提交实训报告;实训报告内容是否完整
45、、准确.20 优秀:按时并很好地完成实训任务,提交实训报告;实训报告内容完整,条理清晰,结构逻辑性强,用词准确,能准确运用专业术语;(20 分)合格:基本能按时完成实训任务,提交实训报告;报告内容较完整,条理基本清晰,用词基本准确,基本能运用专业术语;(15分)不及格:不能按时完成实训任务,不能按时提交实训报告;报告内容不完整,条理不清晰,不能运用专业术语.(10 分)2 技术设计书编写内容是否完整 20 优秀:技术设计书内容完整,逻辑性强、用词准确;(20 分)合格:技术设计书内容较完整,逻辑性强、用词准确;,程序基本正确;(15 分)不及格:完成了技术设计书编写,内容不够完整。(10 分)
46、3 测图前期准备工作是否完善 20 优秀:桥梁施工控制测量前期准备工作完善,作业程序合理、施工方法正确;(20 分)合格:桥梁施工控制测量前期准备工作较完善,作业程序较合理、施工方法基本正确;(15 分)不及格:完成了桥梁施工控制测量的前期准备工作,作业程序不够合理、施工方法有误。(10 分)4 技术设计书质量评定 20 优秀:完成了桥梁施工控制网的技术设计书编写,措施完善、合理;(20 分)合格:完成了桥梁施工控制网的技术设计书编写,措施基本完善、较为合理;(15分)不及格:完成了桥梁施工控制网的技术设计书编写。(10 分)5 考核情况 20 优秀:考核过程中,回答问题准确,思路非常清晰,语言表达能力强;(20 分)合格:考核过程中,回答问题基本准确,思路较清晰,语言表达能力一般;(15 分)不及格:考核过程中,回答问题不准确,思路不清晰。(10 分)六、评价 从对技术设计要求、原则及相关知识的掌握程度,工程资料及规范要求的理解程度,技术设计书的编写思路内容掌握,桥梁施工控制测量前期工作的工作程序、施工方法,任务工单的填写情况等多方面进行分析评价。并对本任务的学习重点、薄弱环节及学习方法给予指导性意见。