《《电磁场与电磁波》必考复习题(2013年)(共23页).doc》由会员分享,可在线阅读,更多相关《《电磁场与电磁波》必考复习题(2013年)(共23页).doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上电磁场与电磁波 2013期末复习题 一填空题1已知矢量,则= , = 。 2矢量垂直的条件为 。3理想介质的电导率为 ,理想导体的电导率为 ,欧姆定理的微分形式为 。4静电场中电场强度和电位的关系为 ,此关系的理论依据为 ;若已知电位,在点(1,1,1)处电场强度 。5恒定磁场中磁感应强度和矢量磁位的关系为 ;此关系的理论依据为 。 6通过求解电位微分方程可获知静电场的分布特性。静电场电位泊松方程为 ,电位拉普拉斯方程为 。7若电磁场两种媒质分界面上无自由电荷与表面电流,其边界条件为:_和 ;边界条件为:和 。8空气与介质的分界面为z=0的平面,已知空气中的电场强度为
2、,则介质中的电场强度 。 9. 有一磁导率为 半径为a 的无限长导磁圆柱,其轴线处有无限长的线电流 I,柱外是空气(0 ),则柱内半径为处磁感应强度 = ;柱外半径为处磁感应强度= 。10已知恒定磁场磁感应强度为,则常数m= 。 11半径为a的孤立导体球,在空气中的电容为C0= ;若其置于空气与介质(1 )之间,球心位于分界面上,其等效电容为C1= 。12已知导体材料磁导率为,以该材料制成的长直导线单位长度的内自感为 。13空间有两个载流线圈,相互 平行 放置时,互感最大;相互 垂直 放置时,互感最小。14两夹角为(n为整数)的导体平面间有一个点电荷q,则其镜像电荷个数为 (2n-1) 。15
3、空间电场强度和电位移分别为,则电场能量密度we= 。16空气中的电场强度 ,则空间位移电流密度= 。17在无源区内,电场强度的波动方程为 或 。18频率为300MHz的均匀平面波在空气中传播,其波阻抗为 ,波的传播速度为 ,波长为 ,相位常数为 ;当其进入对于理想介质(r = 4,0),在该介质中的波阻抗为 ,传播速度为 ,波长为 ,相位常数为 。19已知平面波电场为,其极化方式为 右旋圆极化 。20已知空气中平面波,则该平面波波矢量 ,角频率= ,对应磁场 。21海水的电导率=4S/m,相对介电常数。对于f=1GHz的电场,海水相当于 一般导体() 。22导电媒质中,电磁波的相速随频率变化的
4、现象称为 色散 。23 频率为f的均匀平面波在良导体(参数为)中传播,其衰减常数= ,本征阻抗相位为 ,趋肤深度= 。24均匀平面波从介质1向介质2垂直入射,反射系数 和透射系数 的关系为 。25均匀平面波从空气向的理想介质表面垂直入射,反射系数= ,在空气中合成波为 行驻波 ,驻波比S= 。26均匀平面波从理想介质向理想导体表面垂直入射,反射系数= ,介质空间合成电磁波为 驻波 。27均匀平面波从理想介质1向理想介质2斜入射,其入射角为i, 反射角为r, 折射角为t ,两区的相位常数分别为k1、k2,反射定律为 ,折射定律为 。28均匀平面波从稠密媒质(1)向稀疏媒质(2)以大于等于 斜入射
5、,在分界面产生全反射,该角称为 临界角 ;平行极化波以 斜入射,在分界面产生全透射,该角称为 布儒斯特角 。29TEM波的中文名称为 横电磁波 。30电偶极子是指 几何长度远小于波长、载有等幅同相电流的电流线 ,电偶极子的远区场是指 区域的场 。二简答题1. 导电媒质和理想导体形成的边界,电流线为何总是垂直于边界?答:由边界条件,电场的切向分量连续,而理想导体中的电场为零,故边界导体一侧的电场切向分量为0,从可知电流线总是垂直于边界。2写出恒定磁场中的安培环路定律并说明:磁场是否为保守场?答:恒定磁场中的安培环路定律为因为电流密度不为零,所以磁场不是保守场。3电容是如何定义的?写出计算双导体电
6、容的基本步骤。 答:单导体的电容为双导体的电容定义为计算双导体电容的基本步骤:(1)选取合适的坐标系;(2)假设其中一个导体带电荷q,另一个导体带电荷;(3)求导体间的电场;(4)由计算两导体间的电压;(5)求电容。4叙述静态场解的惟一性定理,并简要说明其重要意义。答:静态场解的惟一性定理:在场域V 的边界面S上给定或的值,则泊松方程或拉普拉斯方程在场域V中具有惟一值。 惟一性定理的重要意义:l 给出了静态场边值问题具有惟一解的条件;l 为静态场边值问题的各种求解方法提供了理论依据;l 为求解结果的正确性提供了判据。5什么是镜像法?其理论依据是什么?如何确定镜像电荷的分布?答:镜像法是用位于场
7、域边界外虚设的较简单的镜像电荷分布来等效替代该边界上未知的较为复杂的电荷分布,从而将原含该边界的非均匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程得以明显简化的一种间接求解法。镜像法的理论基础解的惟一性定理。确定镜像电荷的两条原则: 像电荷必须位于所求解的场区域以外的空间中; 像电荷的个数、位置及电荷量的大小以满足所求解的场区域的边界条件来确定。6分别写出麦克斯韦方程组的积分形式、微分形式并做简要说明。答:麦克斯韦方程组的积分形式:麦克斯韦方程组的微分形式:7写出坡印廷定理的积分形式并简要说明其意义。答:坡印廷定理的积分形式式中在单位时间内体积V 中所增加的电磁能量。单位时间内电场对
8、体积V中的电流所作的功;对导电媒质,即为体积V内总的损耗功率。单位时间内通过曲面S 进入体积V的电磁能量。物理意义:在单位时间内,通过曲面S 进入体积V的电磁能量等于体积V 中所增加的电磁场能量与损耗的能量之和能量守恒!。8什么是波的极化?说明极化分类及判断规则。答:波的极化:在电磁波传播空间给定点处,电场强度矢量的端点随时间变化的轨迹,或者说是在空间给定点上电场强度矢量的取向随时间变化的特性分为线极化、圆极化、椭圆极化三种。判断规则:根据两正交分量的振幅或/和两者初相角的相对大小来确定,如果,则为线极化;若,且,则是圆极化波;其它情况是椭圆极化波。9分别定性说明均匀平面波在理想介质中、导电媒
9、质中的传播特性。答:理想介质中的均匀平面波的传播特点:l 电场、磁场与传播方向之间相互垂直,是横电磁波(TEM波);l 无衰减,电场与磁场的振幅不变;l 波阻抗为实数,电场与磁场同相位;l 电磁波的相速与频率无关,无色散;l 电场能量密度等于磁场能量密度,能量的传输速度等于相速。导电媒质中均匀平面波的传播特点:电场强度E、磁场强度H与波的传播方向相互垂直,是横电磁波(TEM波);媒质的本征阻抗为复数,电场与磁场相位不同,磁场滞后于电场角;在波的传播过程中,电场与磁场的振幅呈指数衰减;电磁波的相速不仅与媒质参数有关,而且与频率有关 (有色散);平均磁场能量密度大于平均电场能量密度。10简要说明行
10、波、驻波、行驻波之间的区别。答:行波的振幅不变,其驻波比为1;驻波的振幅最小值是零,其驻波比为无穷大;行驻波是行波与纯驻波的叠加,其振幅最小值非零,驻波比在1到无穷大之间。11简要说明电偶极子远区场的特性。答:电偶极子远区场的特点: 远区场是横电磁波,电场、磁场和传播方向相互垂直; 远区电场和磁场的相位相同; 远区场电磁场振幅比等于媒质的本征阻抗,即 远区场是非均匀球面波,电磁场振幅与成正比; 远区场具有方向性,按sin变化。三、分析计算题1. 电场中有一半径为的圆柱体,已知圆柱体内、外的电位函数为求:圆柱体内、外的电场强度; 柱表面电荷密度。注:柱坐标中解:由可得因为,则2. 同心球形电容器
11、的内导体半径为,外导体半径为,其间填充介电常数为的均匀介质。已知内导体球均匀携带电荷q。求:介质求内的电场强度;该球形电容器的电容。解:由高斯定理,可得所以因为内外导体球壳间的电压为所以电容量3. 空气中有一磁导率为、半径为的无限长导体圆柱,其轴向方向的电流强度为,求圆柱内外的磁感应强度和磁场强度。解:由,可得在圆柱体内时,在圆柱体外时,所以相应的磁感应强度为4. 矩形线圈长与宽分别为、,与电流为的无线长直导线放置在同一平面上,最短距离为d,如图。已知,求长直导线产生的磁场及线圈与导线间的互感;已知导线电流,求导线产生的磁场及线圈中的感应电动势。解:由,可得所以因为磁链为故互感是 与前面相似,
12、可求得磁感应强度为磁通量是感应电动势为其参考方向见下图中的红色箭头。5. 一点电荷q放置在无限大的导体平面附近,高度为h。已知空间介质的相对介电常数。求点电荷q受到的电场力;高度为4h的P点的电场强度与电位。解: 由镜像原理,点电荷q受到的电场力即为其镜像电荷对它的作用力,因此 高度为4h处的电场强度为电位6已知半径为的导体球带电荷量为Q,距离该球球心处有一电荷q,求q受到的电场力。解: 镜像电荷分布见下图,其中,。所以q受到的电场力是7海水的电导率=4S/m,相对介电常数 。设海水中电场大小为,求频率f=1MHz时,海水中的传导电流密度J; 海水中的位移电流密度JD。解:由可得,海水中的传导
13、电流密度大小海水中的位移电流密度大小为8在理想介质 ()中均匀平面波电场强度瞬时值为:。已知该平面波频率为10GHz,求:该平面波的传播方向、角频率、波长、波数k;电场强度复矢量;磁场强度瞬时值;平均能流密度矢量。解: 沿+z方向传播;角频率、波长、波数k依次为,电场强度复矢量磁场强度复矢量为所以其瞬时值是平均能流密度矢量(讲到此!)9已知自由空间中均匀平面波磁场强度瞬时值为: A/m求该平面波角频率、频率f、波长l;电场、磁场强度复矢量;瞬时坡印廷矢量、平均坡印廷矢量。解: ,故平均坡印廷矢量瞬时坡印廷矢量:10均匀平面波从空气垂直入射到某介质(=r0,0),空气中驻波比为3,分界面为合成电
14、场最小点,求该介质的介电常数解:因为空气中驻波比由此解出由于界面上是合成波电场的最小点,故,而反射系数式中,于是有11已知空气中均匀平面波电场强度的复数表示为,从z=0区域的理想介质中,已知该理想介质r = 4,0,求反射波的电场强度、磁场强度;透射波电场强度、磁场强度。z0区域合成波的电场强度、磁场强度并说明其性质。解: 因为,且所以 ,z0区域合成波的电场强度、磁场强度合成波特点:A. 为行驻波。B当时,电场振幅最大,此位置是,当时,电场振幅度最小,此时,定义驻波比为C因为所以,与的最大值与最小值出现的位置正好互换。D沿+z方向传播的平均功率等于入射波平均功率密度减去反射波平均功率密度,即
15、媒质2中沿+z方向传播的平均功率密度为且有。12已知空气中均匀平面波电场强度的复矢量表示为,垂直入射于z=0的理想导体板上,求反射波电场强度、磁场强度复矢量;导体板上的感应电流密度;空气中合成电场强度的瞬时值表示式并说明合成波特性。解:反射波电场强度、磁场强度复矢量分别为,因为,所以导体板上的感应电流密度 合成波特性:A媒质1中的合成波是驻波,电场振幅的最大值为2,最小值为0 ;磁场振幅的最大值为,最小值也为0。两相邻波节点之间任意两点的电场同相,波节点两侧的电场反相。B电场波节点:;电场波腹点:。C、在时间上有/ 2 的相移,在空间上错开/ 4,电场的波腹(节)点正好是磁场的波节(腹)点;D坡印廷矢量的平均值为零,不发生能量传输过程,仅在两个波节间进行电场能量和磁场能的交换。13已知均匀平面波由空气向位于z=0平面的理想导体表面斜入射。已知入射波电场强度为,在下图中画出入射波和反射波场强与磁场强度方向并判断该平面波为平行极化波还是垂直极化波;波矢量;平面波频率;入射角;反射波电场强度;反射波磁场强度;空气中合成电场强度。解:因为入射面是xoz面,而电场方向与其垂直,故为垂直极化波。由入射电场的表达式可知所以 入射角反射波电场强度反射波磁场强度:,专心-专注-专业