《项目反应理论简介.pdf》由会员分享,可在线阅读,更多相关《项目反应理论简介.pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、项目反应理论简介一、项目反应理论的概念项目反应理论(Item Response Theory,IRT)是一系列心理统计学模型的总称,是针对经典测量理论(Classical Test Theory,简称 CTT)的局限性提出来的。IRT是用来分析考试成绩或者问卷调查数据的数学模型,这些模型的目标是来确定的潜在心理特征(latent trait)是否可以通过测试题被反应出来,以及测试题和被测试者之间的互动关系。目前广泛应用在心理和教育测量领域,基于 IRT 理论的计算机自适应测试(CAT)是 CAA常用的测试方法。潜在特质模型(latent trait mode l)认为,在被试样本可观察到的测试
2、成绩和基于该成绩不可观察的特质或能力之间存在着联系。二、IRT 的理论体系(三条基本假设)假设一:能力单维性假设指组成某个测验的所有项目都是测量同一潜在特质;假设二:局部独立性假设指对某个被试而言,项目间无相关存在;假设三:项目特征曲线假设指对被试某项目的正确反映概率与其能力之间的函数关系所作的模型。IRT 最大的优点是题目参数的不变性,即题目参数的估计独立于被试组。它假定,被试在某一试题上的成绩不受他在测验中其他试题上的成绩影响;同时,在试题上各个被试的作答也是彼此独立的,仅由各被试的潜在特质水平所决定,一个被试的成绩不影响另一被试的成绩,这就叫做局部独立性假设。IRT 理论所做出的一切推论
3、都必须以局部独立性假设为前提。三、IRT 常用的模型IRT 根据受测者回答问题的情况,通过对题目特征函数的运算,来推测受测者的能力。IRT 的题目参数有:难度(difficulty index)、区分度(discriminative powder index)和猜测系数(guessing index)。根据参数的不同,特征函数可分为单参数模型(难度)、双参数模型(难度、区分度)和三参数模型(难度、区分度、猜测参数)等。IRT 的模型有 Logistic模型,Rasch 模型,Lord 的正态卵形曲线模型等二十余种。下面以 Logistic模型为例进行简要介绍:Logistic单参数模型(难度)
4、公式如下:Logistic双参数模型(难度、区分度)公式如下:Logistic三参数模型(难度、区分度、猜测参数)公式如下:其中:D=1.702;:受测者能力估计值;a:题目的区分度,它的值越大说明题目对受测者的区分程度越高;b:题目的难度;c:题目的猜测系数,它的值越大,说明不论受测者能力高低,都容易猜对;P():能力为 的人答对此题目的概率。如何选择恰当的模型进行参数估计是题库选题的关键。不同的模型具有不同的特点,适合于不同条件下的使用。就上面所列的三种模型而言:单参数模型比较简单,使用较为方便,但它对项目参数性质的要求较为苛刻;双参数模型要求项目的猜测系数较小;三参数模型虽然具有涵盖较多
5、项目信息的优点,但亦给参数估计带来更为复杂的工作。因此,虽然关于模型选择标准现在尚无定论,不过,可以从命题方式、记分方式、参数性质、样本人数、模型的强健性、假设的满足与否等方面得到一些选题的依据。四、参数估计参数估计是应用IRT 的前提。常用极大似然法、贝叶斯等方法进行参数估计,使得所估计出的试题参数不受考生能力分布的影响,即具有参数不变性的优点。在项目反应理论中,难度被定义为试题本身固有的特性,不随考生样本的变化而变化。该理论认为,如果考生足够多的话,每道题都会有部分人不能答对,部分人容易答对,部分人费些力气刚好能够回答对。试题的难易程度,决定于刚好能够答对的那部分人的水平高低,水平高的刚好
6、能够答对该题就难,水平低的也能答上来题就易。这种难度与考生的能力建立在同一个量表上。在教育与心理测量中应用项目反应理论时,必须进行项目参数与被试能力的估计。有时是已知项目参数,估计能力参数;有时是已知能力参数,估计项目参数;更多的是能力和项目参数都未知,需要同时估计项目参数和能力参数。五、项目特征曲线(Item Characteristic Curve,简称 ICC)项目特征函数亦称项目特征曲线(ICC),是一种根据测试所获得的考生能力参数和项目特征参数来表示考生可能答对率(成功率)的 IRT 模式的数学表示方法,同一条 ICC所对应的项目参数是唯一的。IRT 研究的一项重要工作,就是确定题目
7、特征曲线的形态,项目反应模型除了要拟合所选定的题目特征曲线形态,还应该包括其他一些重要的特征,否则就不是一个好的模型。根据特征函数可画出项目特征曲线,下面以典型的 Logistic三参数模型的项目特征曲线为例:从上图可以看出:特征曲线拐点处的斜率,即斜率的最大值。表示题目的区分度,它的值越大说明题目对受测者的区分程度越高。特征曲线上最陡的那一点所对应的 值,表示题目的难度。特征曲线的截距,表示题目的猜测参数,它的值越大,说明不论受测者能力高低,都容易猜对本道题目。教育测量学研究表明,未经筛选的大被试群体的基本心理素质如智力、能力、人格特点等的分布,服从正态分布。所以,理论上被试能力取值范围为(-,+),但在实际应用中,取值范围多取-3.00,3.00。IRT 的项目特征曲线就明确表示出被试能力 与项目的关系,横轴,纵轴P(),它表示具有某种能力 的被试答对某项目的概率P()。因此,只要已知被试的能力值,就可预测出他们可能答对某个项目的概率。六、信息函数信息函数是项目反应理论中用以刻画一个测试或一道试题有效性的工具,它是直接反映测验分数对学生能力估计精度的指标。信息函数值越大,这种估计就越精确。项目信息函数(item information function)是 IRT 的核心概念,这个基础性的概念对测验的应用领域起了诸多影响。