《《分类加法计数原理与分步乘法计数原理》说课稿(附教学设计).pdf》由会员分享,可在线阅读,更多相关《《分类加法计数原理与分步乘法计数原理》说课稿(附教学设计).pdf(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、分类加法计数原理与分步乘法计数原理说课稿一、本课教学内容的本质、地位、作用分析分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归纳出的基本规律,它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识。返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运算的推广。从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤”,先对每个步骤进行细致分析,再整合为一个完整的过程。这样做的目的是为
2、了分解问题、简化问题。可见,理解和掌握两个计数原理,是学好本章内容的关键。二、教学目标分析1、知识目标:使学生熟练掌握两个原理的内容、区别,能够灵活的应用两个原理解决常见的计数问题。2、能力目标:在教学过程中,凸显两个原理发现的原始过程,使学生深刻理解由特殊到一般的归纳推理思维,在应用原理解决问题时,体会一般到特殊的演绎推理思维,从而培养学生的抽象概括能力、逻辑思维能力以及解决实际问题时主动应用数学知识的能力。3、德育渗透目标:通过探索与发现的过程,使学生亲历数学研究的成功和快乐,感悟数学朴实无华的内在美,学会提出问题、分析问题、解决问题、推广结论进而完善结论的数学应用意识,激发学生勇于探索、
3、敢于创新的精神,优化学生的思维品质。三、教学问题诊断两个原理的获得过程对于学生来讲并不难,学生已经具备了由具体问题抽象概括、总结归纳的能力,对于两个原理的应用,尤其是分类、分步的区别是认识上的难点,事实上,经验表明:有些学生一直到高考前都难以准确的区分好两个原理,教学始终牢牢把握这一难点也是重点展开。四、本节课的教学特点以及预期效果分析普通高中数学课程标准 指出:高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程。新课程标准的价值取向是要求教师成为决策者而不是执行者,要求教师创造出班级气氛、创造出某种学习环境、设计相应教学活动并表达自己的教育理念等等。基于以
4、上思想,本节课采用问题式教学为主线,辅以启发式、探究式、自主式、讨论式教学方式。教学内容以 2010 年南非世界杯相关问题背景为主线展开,辅以大量的实际例子,形成学生对于两个原理的发现、归纳、总结、应用、推广、再认识的过程。具体而言,设置以下几个环节:1、【创设情境、设疑激趣】引入采用世界杯总场数的设问,引导学生发现逐个列举所有场数不易操作,从而引出研究计数问题的必要性并给出计数问题的含义。给出课题,指明探究方向。2、【问题导学、研究分类加法计数原理】先用世界杯网络测试的背景作为引例,启发学生放飞思维,联系生活实际,举类似的例子;再引导学生充分讨论,深入探究,寻求例子的共性,归纳、概括出分类加
5、法计数原理;接着为了加深对于原理的认识,给出“原理”的含义,并进一步对原理的内容进行解释,强调“完成一件事”“分类”“加法”三个关键词;再通过实例引导学生推广原理;最后依然用世界杯的背景例子启发学生归纳出分类的基本原则:“不重不漏”。3、【类比研究、研究分步乘法计数原理】完全类比分类加法计数原理的研究思路,充分讨论,层层设问,得出原理,延伸推广,强调分步注意“步骤完整,步步相依”。4、【典型例题、区分两个原理】把课本上的书架三层有三种书分别若干本的例子,改编为三问:第一问求任取一本书的取法数,直接用分类加法计数原理即可解决;第二问求每层各取一本书的方法数,直接用分步乘法计数原理;第三问求取两本
6、不同学科的书的方法数,需要先分类,再分步,体现了两个原理的综合应用。本题旨在同一背景下认识两个原理,区分两个原理,尤其区分“类”和“步”。然后先讨论,再和学生一起归纳出两个原理的联系和区别,填充表格。5、【课下讨论探究】设计了两个小题,分别是参赛、夺冠两个极易混淆的背景,需要学生课下充分讨论、探究,深思熟虑再解决,是课堂教学的延伸。6、【布置作业、反思小结】布置课后作业,小结内容,提炼归纳出利用两个原理解决计数问题的一般思路。最后指出:细微的生活中往往蕴涵着深刻的数学思想方法,利用数学工具研究缤纷多彩的世界充满了无限的乐趣!这就是数学的魅力!最后预祝大家都能学好数学、用好数学、欣赏数学、热爱数
7、学!通过以上设计,预期达到以下效果:使学生在对于两个原理的发现过程中,体会由特殊到一般的归纳推理思维;在应用原理解决实际问题的过程中,体会主动应用数学的意识;通过大量的老师举例、学生举例、典型例题,使学生熟练两个原理的应用,体会两个原理的广泛应用。新的课程改革的理念侧重以下四个环节:以人为本;树立开放的大课程观;树立师生交往互动的平等观;强调整合构建新的课堂教学目标体系。本节课围绕以上四个环节紧密展开,力求通过对于两个原理的探究,提高学生数学素养,增强学习兴趣,优化学习习惯,提高数学能力。分类加法计数原理与分步乘法计数原理教学设计一、本节课教学内容的本质、地位、作用分析分类加法计数原理与分步乘
8、法计数原理是人类在大量的实践经验的基础上归纳出的基本规律,它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识。返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运算的推广。从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤”,先对每个步骤进行细致分析,再整合为一个完整的过程。这样做的目的是为了分解问题、简化问题。可见,理解和掌握两个计数原理,是学好本章内容的关键。二、教学目标分析1、知识目标
9、:使学生熟练掌握两个原理的内容、区别,能够灵活的应用两个原理解决常见的计数问题。2、能力目标:在教学过程中,凸显两个原理发现的原始过程,使学生深刻理解由特殊到一般的归纳推理思维,在应用原理解决问题时,体会一般到特殊的演绎推理思维,从而培养学生的抽象概括能力、逻辑思维能力以及解决实际问题时主动应用数学知识的能力。3、德育渗透目标:通过探索与发现的过程,使学生亲历数学研究的成功和快乐,感悟数学朴实无华的内在美,学会提出问题、分析问题、解决问题、推广结论进而完善结论的数学应用意识,激发学生勇于探索、敢于创新的精神,优化学生的思维品质。三、教学过程【引入】展示世界杯图片:2010 南非世界杯是今年全球
10、的一大体育盛事。32 支球队齐聚南非,观众席上,人山人海,彩旗飘飘;绿茵场上,群雄逐鹿,球技高超,真是一场难得的视觉盛宴啊!通过小组赛、十六强赛,八强赛、四强赛、季军赛、决赛,最终决出冠亚季军,大家知道总共进行了多少场比赛吗?生齐答:64 场。正确!这个场数我们能否通过一一列举出所有的场次,逐个数出呢?学生 1:我觉得应该可以,但是方法数较大,操作起来繁琐。没错。其实,在生活中,我们还会遇到很多类似的方法数的计算问题,这种问题我们称之为计数问题。(板书)一、计数问题:计算完成一件事的方法数的问题。我们将通过本章的研究学习解决不通过逐个数来确定这种方法数的技巧方法。【新课】今天我们先来研究解决计
11、数问题的两种最基本、最重要的方法:字幕:1.1 分类加法计数原理与分步乘法计数原理首先,我们大家一起来研究问题1.(镜头指向幻灯片)【问题 1】2010南非世界杯开赛前,中央电视台某位记者通过网络测试了解到观众最感兴趣欧洲球队和美洲球队如下:欧洲球队美洲球队德国巴西英格兰阿根廷西班牙乌拉圭意大利法国他决定从这些球队中选择一个跟踪采访,试问:他有几种选择方式?谁能解决这个问题?,你来试试!学生 2:8 种。很好,请问:这名记者要完成一件什么事?学生 2:从这些球队中选择一个跟踪采访。他怎么完成这件事?学生 2:从欧洲球队 或美洲球队中选一个。怎么计算方法数?学生 2:把两类球队数相加即可,5+3
12、=8。分析的不错,请坐!其实,提出问题比解决问题更难能可贵,我们大家思考一下,能否举一些生活中类似的例子吗?【问题 2】你能举一些生活中类似的例子吗?你能试着解决吗?20 秒学生 3:暑假马上到了,我想去看清华园,从沧州到北京有两种交通工具供选择:长途汽车、旅客列车,已知当天长途汽车有5 班,旅客列车有 3 班。问共有多少种不同的选择?相当不错!你能解决吗?学生 3:能,5+3=8.这个问题中,我们需要完成一件什么事?学生 3:从沧州到北京。怎么完成这件事?学生 3:坐汽车或火车都可以完成。怎么计算?学生 3:把两类方法数相加即可。嗯,分析透彻,还有同学能举吗?学生 4:咱们班共有男生 30
13、名,女生 20名,从班上选出1 名同学当班长,有多少不同的选法?也不错,你能类似分析吗?学生 4:我需要完成一件事是:从班上选出1 名同学当班长,只要从男生 或女生中选出一人即可,所以,30+20=50.刚刚我们研究的这些问题虽然简单,但体现出数学中的一个原理,抛开其实际意义,我们能否寻求共性,抽象出一个命题呢?大家可以讨论一下。谁能试着分析一下【问题 3】这些例子有哪些共性?你能试着归纳出一个一般的命题吗?学生 5:这些例子都是计数问题,即需要完成一件事,计算其方法数,都有两类方案可以选择,都用加法运算。很好!你的抽象概括能力很强。你能把它叙述为一个命题吗?学生 5:做一件事有两类不同的方案
14、,在第1 类方案中有 m种不同的方法,在第 2 类方案中有 n 种不同的方法,那么完成这件事共有N=n+m 种不同的方法。相当不错,你的语言表达能力也很强。好极了,我们把刚才那位同学叙述的内容整理一下,得到分类加法计数原理:完成一件事有两类不同的方案,在第1 类方案中有 n1种不同的方法,在第2 类方案中有 n2种不同的方法,那么完成这件事共有N=n1+n2种不同的方法。(板书)二、分类 N=n1+n2原理是指在大量的观察、实践的基础上,归纳总结出的具有普遍意义的基本规律,一般无须证明。我们看到:在这个原理中,大家要注意:“完成一件事”,“分类”,“加法”几个关键词。这个原理浅显易懂,关键能够
15、灵活应用。以后在用这个原理解决问题时,大家要能够用原理表达,要清楚完成一件什么事?怎么完成?分哪几类?接着看下一个问题。【问题 1 的变式】2010 南非世界杯是今年体育界的一大盛事。开赛前,中央电视台某位记者通过网络测试了解到观众最感兴趣欧洲球队、美洲球队和亚洲球队如下:欧洲球队美洲球队亚洲球队德国巴西韩国英格兰阿根廷日本西班牙乌拉圭意大利法国他决定从这些球队中选择一个跟踪采访,试问:他有几种选择方式?这个问题你能解决吗?学生 8:能,5+3+2=10.不错,这个问题对你有什么启发呢?学生 8:我觉得原理中的方案的种类不一定是两类,可以是三类。你能试着把原理推广到三类吗?【问题 4】你能进一
16、步推广到有3 类方案的情况吗?m类方案呢?学生 8:当然能,完成一件事有三类不同的方案,在第1 类方案中有 n1种不同的方法,在第2 类方案中有 n2种不同的方法,在第3 类方案中有 n3种不同的方法,那么完成这件事共有N=n1+n2+n3种不同的方法。推广 1 完成一件事有三类不同的方案,在第 1类方案中有 n1种不同的方法,在第 2 类方案中有 n2种不同的方法,在第3 类方案中有 n3种不同的方法,那么完成这件事共有N=n1+n2+n3种不同的方法。我们当然还能进一步推广到4 类、5 类、甚至 m类。学生,你试试!推广 2 完成一件事有 m类不同的方案,在第 1 类方案中有 n1种不同的
17、方法,在第 2 类方案中有 n2种不同的方法,在第m类方案中有 nm种不同的方法,那么完成这件事共有N=n1+n2+nm 种不同的方法。让我们继续我们的世界杯之旅。【问题 5】世界杯开赛前,新浪网和搜狐网在网上分别进行了“本届世界杯你最支持的球队”的评选活动,位于前五位的结果如下:新浪网搜狐网德国巴西巴西阿根廷西班牙乌拉圭意大利西班牙法国荷兰试问:如果你从这两个网站的评选结果中挑选一支你最支持的球队,有多少种选法?谁能试着分析一下你的思路。学生 9:因为我要完成的事是挑选一支最支持的球队,所以我从新浪网和搜狐网中选,但是巴西、西班牙两个网的结果都有,所以有8255种选择。很好,我们能否直接用分
18、类加法计数原理解答呢?学生 9:不能!去掉重复的队即可。【问题 6】由此你能试着总结应用分类加法计数原理需要注意的问题吗?学生 9:分类需要注意“不能重复”。总结的很好,当然我们在分类时除了不能重复之外,还不能遗漏,即“不重不漏”,这也是分类讨论的数学思想的关键点。再来研究下一个问题。【问题 7】2010 年南非世界杯小组赛中,A 小组成员有:南非、墨西哥、法国、乌拉圭,在小组赛前,你能计算前两名的可能情况有多少种吗?学生 10:12种。谈谈你的想法。学生 10:如果第一名是南非,第二名可以是墨西哥或法国或乌拉圭,共三种方法;当然第一名还可能是墨西哥或法国或乌拉圭,所以方法数为4 3=12.分
19、析很精彩。我们可以用图来展示这位同学的思想,这种图示你能形象的给它命个名吗?学生 10:嗯,我觉得它形状象树,叫做“树形图”,可以吗?很好,这种图示我们在解决计数问题时十分常用,我们通常就称之为“树形图”。学生 11:我觉得还可以这样考虑:我们要完成一件事是排出第一、第二名,那么我先选第一名,有4 种方法,再选第二名有3 种方法,所以共有4 3=12.这位同学的分析也很好。我们也能举出生活中一些类似的例子。大家可以讨论一下。【问题 8】你能举一些生活中类似的例子吗?学生 3:老师,我想改编一下刚才的例子,暑假来了,我要从沧州到北京旅游,若想中途参观南开大学,已知从沧州到天津有3 种乘车方式,从
20、天津到北京有 2 种乘车方式,试问:要从沧州到北京共有多少种不同的方法?你能解答吗?学生 3:3 26种。这个问题中,要完成一件什么事?学生 3:从沧州到北京。不太确切。学生 3:从沧州先到天津,再到北京。你能指出所有的路线吗?学生 3:1A、1B、2A、2B、3A、3B。1 是否是完成这件事的一种方法?学生 3:不是。为什么?学生 3:1 不能完成这件事。学生 4:老师,我也能改编我的例子,咱们班共有男生20 名,女生 10 名,从班上选出 1 名男生和一名女生担任节目主持人,有多少不同的选法?你能类似的分析一下吗?学生 4:我要我要完成从班上选出1 名男生和一名女生的任务,先选男生,再选女
21、生,共有 20 10200种方法。还有同学能从别的情景下举例并解决吗?学生 12:我有 5 件上衣,4 条裤子,选出一件上衣和一条裤子进行搭配,有 5 420 种选法?学生 13:食堂有米饭、馒头、花卷3 种主食,有 6 种炒菜,要选择一种主食和一种炒菜,有 6318种不同的选法?大家举的例子漂亮极了!我相信大家一定能够寻求共性,仿照分类加法计数原理抽象出一个一般命题?【问题 9】这些例子有哪些共性?你能仿照分类加法计数原理试着归纳出一个一般的命题吗?学生 14:这些问题都需要完成一件事,计算其方法数,都有两个步骤,用乘法计算。很好,你能把它叙述为一个命题吗?学生 14:可以,完成一件事有两个
22、步骤,做第1 步有 n1种不同的方法,做第 2 步有 n2种不同的方法,那么完成这件事共有N=n1n2种不同的方法。(板书)二、分步 N=n1n2我们看到:在这个原理中,我们要注意:“完成一件事”,“分步”,“乘法”几个关键词。步与步之间要相互独立,分步要做到“步骤完整”,从刚才的讨论可以看出,只有每一步都完成了,这件事才宣告完成。这个原理依然浅显易懂,关键能够灵活应用。以后在用这个原理解决问题时,要用原理表达,完成一件什么事?怎么完成?分哪几步?【问题 10】你能进一步推广到有3 个步骤的情况吗?m个步骤呢?学生 15:完成一件事有三个步骤,做第1 步有 n1种不同的方法,做第2 步有 n2
23、种不同的方法,做第3 步有 n3种不同的方法,那么完成这件事共有N=n1n2n3种不同的方法。推广 2 完成一件事有 m个步骤,做第 1 步有 n1种不同的方法,做第 2 步有n2种不同的方法,做第m步有 nm种不同的方法,那么完成这件事共有N=n1n2nm 种不同的方法。好,我们共同来解决一个例题。【例 1】书架的第一层有4 本不同的计算机书,第二层有 3 本不同的文艺书,第三层有 2 本不同的体育书。(1)从书架中任取 1 本书,有 9 种不同的取法;(2)从书架的第 1,2,3 层各取一本书,有 24 种不同的取法;(3)从书架中任取 2 本不同学科的书,有 26 种不同的取法。这个问题
24、 综合应用了两个原理,体现了“类中有步”、“步中有类”思想。学生 16:(1)要完成从书架中取出1 本书这件事,我分三类,即取出计算机书或文艺书或体育书,由分类加法计数原理,有4+3+2=9种不同的取法(2)要完成从书架中第1,2,3 层各取一本书的这件事,我分三步:先取一本计算机书,再取一本文艺书,最后取一本体育书,由分步乘法计数原理,有43 224种不同的取法学生 17:要完成从书架中任取2 本不同学科的书这件事,先分三类:一本计算机书和一本文艺书,一本文艺书和一本体育书,一本体育书和一本计算机书,第一类又分为两步,先取一本计算机书,再取一本文艺书,这样共有43423226种不同的取法学生
25、 18:我觉得还可以分两类,即按照两本书中是否有体育书分类,每类再分步,即有 4323 226种不同的取法学生讨论填充表格。总结归纳两个原理的区别和联系分类加法计数原理分步乘法计数原理联系都需要完成一件事,并计算其方法数区别一完成一件事情共有n 类办法,关键词是“分类”完成一件事情,共分 n 个步骤,关键词是“分步”区别二每类方案中的每种方法都能独立完成这件事情。只有每个步骤完成了,才能完成这件事情。区别三各类办法相互独立各个步骤相互依存课下大家可以分小组谈论,探究如下问题。【探究探究问题】(1)5 名同学参加 3 个不同的体育项目,每人参加一项,不同的方法数有多少种?(2)5 名同学争夺 3 个不同的体育项目的冠军,不同的方法数有多少种?随堂练习:【布置作业、课下巩固】书面作业:课本 6 3 题阅读作业:课本 11-12 研究与发现“子集的个数有多少”【反思小结、思想升华】这节课我们以世界杯为主线,归纳出了两个原理,并利用两个原理解决了很多实际问题。当然要想圆满解决引例中“世界杯总场数为64”这个问题,还需要其它的计数知识,在研究完本章后就能顺利解答。细微的生活中总是蕴含着深刻的数学思想,我们在利用数学工具研究缤纷多彩的世界过程中,可以充分的享受无限的乐趣!或许这就是数学的魅力!最后预祝大家都能学好数学、用好数学、欣赏数学、热爱数学!