《【精编】2020版高考数学大一轮复习第八章立体几何8_4直线平面平行的判定与性质教师用书文新人教版.pdf》由会员分享,可在线阅读,更多相关《【精编】2020版高考数学大一轮复习第八章立体几何8_4直线平面平行的判定与性质教师用书文新人教版.pdf(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.1文档收集于互联网,已整理,word 版本可编辑.2018 版高考数学大一轮复习第八章 立体几何 8.4 直线、平面平行的判定与性质教师用书文 新人教版1线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行?线面平行”)la,a?,l?,l性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行?线线平行”)l,l?,b,lb2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条
2、相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行?面面平行”)a,b,abP,a?,b?,性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行,a,b,ab【知识拓展】重要结论:(1)垂直于同一条直线的两个平面平行,即若a,a,则;(2)垂直于同一个平面的两条直线平行,即若a,b,则ab;(3)平行于同一个平面的两个平面平行,即若,则.【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线()(3)如果一个平面内的两条直线平行
3、于另一个平面,那么这两个平面平行()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面()(5)若直线a与平面内无数条直线平行,则a.()文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.2文档收集于互联网,已整理,word 版本可编辑.(6)若,直线a,则a.()1(教材改编)下列命题中正确的是()A若a,b是两条直线,且ab,那么a平行于经过b的任何平面B若直线a和平面满足a,那么a与内的任何直线平行C平行于同一条直线的两个平面平行D若直线a,b和平面满足ab,a,b?,则b答案D 解析A中,a可以在过b的平面内;B中,a与内的直线可能异面;C中,两平面可相交
4、;D中,由直线与平面平行的判定定理知,b,正确2设l,m为直线,为平面,且l?,m?,则“lm?”是“”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案B 解析当平面与平面平行时,两个平面内的直线没有交点,故“lm?”是“”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,lm?是的必要不充分条件3(2016烟台模拟)若平面平面,直线a平面,点B,则在平面内且过B点的所有直线中()A不一定存在与a平行的直线B只有两条与a平行的直线C存在无数条与a平行的直线D存在唯一与a平行的直线答案A 解析当直线a在平面内且过B点时,不存在与a平行的直线,故选A.4(教材改
5、编)如图,正方体ABCDA1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为 _答案平行解析连接BD,设BDACO,连接EO,在BDD1中,O为BD的中点,所以EO为BDD1的中位线,则BD1EO,而BD1?平面ACE,EO?平面ACE,所以BD1平面ACE.5过三棱柱ABCA1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有_条文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.3文档收集于互联网,已整理,word 版本可编辑.答案6 解析各中点连线如图,只有面EFGH与面ABB1A1平行,在四边形EFGH中有 6 条符合题意题型一直线与平面
6、平行的判定与性质命题点 1 直线与平面平行的判定例 1 如图,四棱锥PABCD中,ADBC,ABBC12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点(1)求证:AP平面BEF;(2)求证:GH平面PAD.证明(1)连接EC,ADBC,BC12AD,BC綊AE,四边形ABCE是平行四边形,O为AC的中点又F是PC的中点,FOAP,FO?平面BEF,AP?平面BEF,AP平面BEF.(2)连接FH,OH,F,H分别是PC,CD的中点,FHPD,FH平面PAD.又O是BE的中点,H是CD的中点,OHAD,OH平面PAD.又FHOHH,平面OHF平面PAD.
7、又GH?平面OHF,GH平面PAD.命题点 2 直线与平面平行的性质例 2(2017长沙调研)如图,四棱锥PABCD的底面是边长为8 的正方形,四条侧棱长均为 217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH平面ABCD,BC平面GEFH.(1)证明:GHEF;(2)若EB2,求四边形GEFH的面积(1)证明因为BC平面GEFH,BC?平面PBC,文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.4文档收集于互联网,已整理,word 版本可编辑.且平面PBC平面GEFHGH,所以GHBC.同理可证EFBC,因此GHEF.(2)解如图,连接AC,BD
8、交于点O,BD交EF于点K,连接OP,GK.因为PAPC,O是AC的中点,所以POAC,同理可得POBD.又BDACO,且AC,BD都在底面内,所以PO底面ABCD.又因为平面GEFH平面ABCD,且PO?平面GEFH,所以PO平面GEFH.因为平面PBD平面GEFHGK,所以POGK,且GK底面ABCD,从而GKEF.所以GK是梯形GEFH的高由AB8,EB2 得EBABKBDB14,从而KB14DB12OB,即K为OB的中点再由POGK得GK12PO,即G是PB的中点,且GH12BC4.由已知可得OB42,POPB2OB268326,所以GK3.故四边形GEFH的面积SGHEF2GK482
9、3 18.思维升华判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a?,b?,ab?a);(3)利用面面平行的性质定理(,a?a);(4)利用面面平行的性质(,a?,a?,a?a)文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.5文档收集于互联网,已整理,word 版本可编辑.如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CDAB.求证:四边形EFGH是矩形证明CD平面EFGH,而平面EFGH平面BCDEF,CDEF.同理HGCD,EFHG.同理HEGF,四边形EFGH为平行四边形CDE
10、F,HEAB,HEF为异面直线CD和AB所成的角(或补角)又CDAB,HEEF.平行四边形EFGH为矩形题型二平面与平面平行的判定与性质例 3 如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1平面BCHG.证明(1)G,H分别是A1B1,A1C1的中点,GH是A1B1C1的中位线,GHB1C1.又B1C1BC,GHBC,B,C,H,G四点共面(2)E,F分别是AB,AC的中点,文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.6文档收集于互联网,已整理,word 版本可编辑.E
11、FBC.EF?平面BCHG,BC?平面BCHG,EF平面BCHG.A1G綊EB,四边形A1EBG是平行四边形,A1EGB.A1E?平面BCHG,GB?平面BCHG,A1E平面BCHG.A1EEFE,平面EFA1平面BCHG.引申探究1在本例条件下,若D为BC1的中点,求证:HD平面A1B1BA.证明如图所示,连接HD,A1B,D为BC1的中点,H为A1C1的中点,HDA1B,又HD?平面A1B1BA,A1B?平面A1B1BA,HD平面A1B1BA.2在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1平面AC1D.证明如图所示,连接A1C交AC1于点M,四边形A1ACC1是
12、平行四边形,M是A1C的中点,连接MD,D为BC的中点,A1BDM.A1B?平面A1BD1,DM?平面A1BD1,DM平面A1BD1.又由三棱柱的性质知,D1C1綊BD,四边形BDC1D1为平行四边形,DC1BD1.又DC1?平面A1BD1,BD1?平面A1BD1,DC1平面A1BD1,又DC1DMD,DC1,DM?平面AC1D,文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.7文档收集于互联网,已整理,word 版本可编辑.平面A1BD1平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么
13、这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化(2016西安模拟)如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O底面ABCD,ABAA12.(1)证明:平面A1BD平面CD1B1;(2)求三棱柱ABDA1B1D1的体积(1)证明由题设知,BB1綊DD1,四边形BB1D1D是平行四边形,BDB1D1.又BD?平面CD1B1,B1D1?平面CD1B1,BD平面CD1B1.A1D1綊B1C1綊BC,四边形A1BCD1是平行四边形,A1BD1
14、C.又A1B?平面CD1B1,D1C?平面CD1B1,A1B平面CD1B1.又BDA1BB,平面A1BD平面CD1B1.(2)解A1O平面ABCD,A1O是三棱柱ABDA1B1D1的高文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.8文档收集于互联网,已整理,word 版本可编辑.又AO12AC 1,AA12,A1OAA21OA21.又SABD12221,1 11ABDA B DV三棱柱SABDA1O 1.题型三平行关系的综合应用例 4 如图所示,在三棱柱ABCA1B1C1中,D是棱CC1的中点,问在棱AB上是否存在一点E,使DE平面AB1C1?若存在,请确定点E的位置;若不存
15、在,请说明理由解方法一存在点E,且E为AB的中点时,DE平面AB1C1.下面给出证明:如图,取BB1的中点F,连接DF,则DFB1C1,AB的中点为E,连接EF,ED,则EFAB1,B1C1AB1B1,平面DEF平面AB1C1.而DE?平面DEF,DE平面AB1C1.方法二假设在棱AB上存在点E,使得DE平面AB1C1,如图,取BB1的中点F,连接DF,EF,ED,则DFB1C1,又DF?平面AB1C1,B1C1?平面AB1C1,DF平面AB1C1,又DE平面AB1C1,DEDFD,平面DEF平面AB1C1,EF?平面DEF,EF平面AB1C1,又EF?平面ABB1,平面ABB1平面AB1C1
16、AB1,EFAB1,点F是BB1的中点,点E是AB的中点即当点E是AB的中点时,DE平面AB1C1.思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.9文档收集于互联网,已整理,word 版本可编辑.如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?解AB平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG,EH.ABFG,ABEH,FGEH,同理可证EFGH,截面EFGH是平行四边形设ABa
17、,CDb,FGH(即为异面直线AB和CD所成的角或其补角)又设FGx,GHy,则由平面几何知识可得xaCGBC,ybBGBC,两式相加得xayb1,即yba(ax),S?EFGHFGGHsin xba(ax)sin bsin ax(ax)x0,ax0 且x(ax)a为定值,bsin ax(ax)absin 4,当且仅当xax时等号成立此时xa2,yb2.即当截面EFGH的顶点E、F、G、H分别为棱AD、AC、BC、BD的中点时截面面积最大5立体几何中的探索性问题典例(12 分)如图,在四棱锥SABCD中,已知底面ABCD为直角梯形,其中ADBC,BAD90,SA底面ABCD,SAABBC2,t
18、an SDA23.(1)求四棱锥SABCD的体积;文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.10文档收集于互联网,已整理,word 版本可编辑.(2)在棱SD上找一点E,使CE平面SAB,并证明规范解答解(1)SA底面ABCD,tan SDA23,SA2,AD3.2分 由题意知四棱锥SABCD的底面为直角梯形,且SAABBC2,VSABCD13SA12(BCAD)AB13212(23)2103.6分 (2)当点E位于棱SD上靠近D的三等分点处时,可使CE平面SAB.8分 证明如下:取SD上靠近D的三等分点为E,取SA上靠近A的三等分点为F,连接CE,EF,BF,则EF綊2
19、3AD,BC綊23AD,BC綊EF,CEBF.10分 又BF?平面SAB,CE?平面SAB,CE平面SAB.12分 解决立体几何中的探索性问题的步骤:第一步:写出探求的最后结论;第二步:证明探求结论的正确性;第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范1(2017保定月考)有下列命题:若直线l平行于平面内的无数条直线,则直线l;若直线a在平面外,则a;若直线ab,b,则a;若直线ab,b,则a平行于平面内的无数条直线其中真命题的个数是()A1 B 2 C 3 D 4 答案A 解析命题:l可以在平面内,不正确;命题:直线a与平面可以是相交关系,不正确;命题:a可以在平面内
20、,不正确;命题正确故选A.2(2016滨州模拟)已知m,n,l1,l2表示直线,表示平面若m?,n?,l1?,l2?,l1l2M,则的一个充分条件是()文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.11文档收集于互联网,已整理,word 版本可编辑.Am且l1Bm且nCm且nl2Dml1且nl2答案D 解析由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D可推知.故选 D.3设l为直线,是两个不同的平面下列命题中正确的是()A若l,l,则B若l,l,则C若l,l,则D若,l,则l答案B 解析l,l,则与可能平行,也可能相交,故A项错;
21、由“同垂直于一条直线的两个平面平行”可知B项正确;由l,l可知,故 C项错;由,l可知l与可能平行,也可能l?,也可能相交,故D项错故选B.4已知平面平面,P是,外一点,过点P的直线m与,分别交于A,C两点,过点P的直线n与,分别交于B,D两点,且PA6,AC9,PD8,则BD的长为()A16 B24 或245C14 D20 答案B 解析由得ABCD.分两种情况:若点P在,的同侧,则PAPCPBPD,PB165,BD245;若点P在,之间,则PAPCPBPD,PB16,BD24.5(2016全国甲卷),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么;如果m,n,那么mn;
22、如果,m?,那么m;如果mn,那么m与所成的角和n与所成的角相等文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.12文档收集于互联网,已整理,word 版本可编辑.其中正确的命题有_(填写所有正确命题的编号)答案解析当mn,m,n时,两个平面的位置关系不确定,故错误,经判断知均正确,故正确答案为.6设,是三个不同的平面,m,n是两条不同的直线,在命题“m,n?,且_,则mn”中的横线处填入下列三组条件中的一组,使该命题为真命题,n?;m,n;n,m?.可以填入的条件有_答案或解析由面面平行的性质定理可知,正确;当n,m?时,n和m在同一平面内,且没有公共点,所以平行,正确7.如
23、图,在正四棱柱ABCDA1B1C1D1(底面是正方形的直四棱柱叫正四棱柱)中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件 _时,有MN平面B1BDD1.答案M线段FH解析因为HNBD,HFDD1,所以平面NHF平面B1BDD1,故线段FH上任意点M与N相连,都有MN平面B1BDD1.(答案不唯一)8将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”给出下列四个命题:垂直于同一平面的两直线平行;垂直于同一平面的两平面平行;平行于同一直线的两直线平行;平行于同一平面的两
24、直线平行其中是“可换命题”的是_(填命题的序号)答案解析由线面垂直的性质定理可知是真命题,且垂直于同一直线的两平面平行也是真命题,故是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以是假命题,不是“可换命题”;由公理4 可知是真命题,且平行于同一平面的两平面平行也是真命题,故是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故是假命题,故不是“可换命题”9在四面体ABCD中,M,N分别是ACD,BCD的重心,则四面体的四个面中与MN平行的是 _答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EMMA12,文档来源为:从网络收集整理.word 版
25、本可编辑.欢迎下载支持.13文档收集于互联网,已整理,word 版本可编辑.ENBN12,所以MNAB.所以MN平面ABD,MN平面ABC.*10.在三棱锥SABC中,ABC是边长为6 的正三角形,SASBSC15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB平面DEFH,那么四边形DEFH的面积为 _答案452解析如图,取AC的中点G,连接SG,BG.易知SGAC,BGAC,SGBGG,故AC平面SGB,所以ACSB.因为SB平面DEFH,SB?平面SAB,平面SAB平面DEFHHD,则SBHD.同理SBFE.又D,E分别为AB,B
26、C的中点,则H,F也为AS,SC的中点,从而得HF綊12AC綊DE,所以四边形DEFH为平行四边形又ACSB,SBHD,DEAC,所以DEHD,所以四边形DEFH为矩形,其面积SHFHD(12AC)(12SB)452.11.如图,E、F、G、H分别是正方体ABCDA1B1C1D1的棱BC、CC1、C1D1、AA1的中点求证:(1)EG平面BB1D1D;(2)平面BDF平面B1D1H.证明(1)取B1D1的中点O,连接GO,OB,易证四边形BEGO为平行四边形,故OBEG,由线面平行的判定定理即可证EG平面BB1D1D.(2)由题意可知BDB1D1.如图,连接HB、D1F,文档来源为:从网络收集
27、整理.word 版本可编辑.欢迎下载支持.14文档收集于互联网,已整理,word 版本可编辑.易证四边形HBFD1是平行四边形,故HD1BF.又B1D1HD1D1,BDBFB,所以平面BDF平面B1D1H.12(2016贵州兴义八中月考)在如图所示的多面体ABCDEF中,四边形ABCD是边长为a的菱形,且DAB60,DF2BE2a,DFBE,DF平面ABCD.(1)在AF上是否存在点G,使得EG平面ABCD,请证明你的结论;(2)求该多面体的体积解(1)当点G位于AF中点时,有EG平面ABCD.证明如下:取AF的中点G,AD的中点H,连接GH,GE,BH.在ADF中,HG为中位线,故HGDF且
28、HG12DF.因为BEDF且BE12DF,所以BE綊GH,即四边形BEGH为平行四边形,所以EGBH.因为BH?平面ABCD,EG?平面ABCD,所以EG平面ABCD.(2)连接AC,BD.因为DF平面ABCD,底面ABCD是菱形,所以AC平面BDFE.所以该多面体可分割成两个以平面BDFE为底面的等体积的四棱锥即VABCDEFVABDFEVCBDFE 2VABDFE213a2a2a32a32a3.*13.如图所示,斜三棱柱ABCA1B1C1中,点D,D1分别为AC,A1C1上的点(1)当A1D1D1C1等于何值时,BC1平面AB1D1?(2)若平面BC1D平面AB1D1,求ADDC的值解(1
29、)如图所示,取D1为线段A1C1的中点,此时A1D1D1C11.连接A1B,交AB1于点O,连接OD1.由棱柱的性质知,四边形A1ABB1为平行四边形,文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.15文档收集于互联网,已整理,word 版本可编辑.点O为A1B的中点在A1BC1中,点O,D1分别为A1B,A1C1的中点,OD1BC1.又OD1?平面AB1D1,BC1?平面AB1D1,BC1平面AB1D1.当A1D1D1C11 时,BC1平面AB1D1.(2)由平面BC1D平面AB1D1,且平面A1BC1平面BC1DBC1,平面A1BC1平面AB1D1D1O,得BC1D1O,同理AD1DC1,A1D1D1C1A1OOB,A1D1D1C1DCAD,又A1OOB1,DCAD1,即ADDC1.