《220KV电力系统继电保护和自动装置设计.doc》由会员分享,可在线阅读,更多相关《220KV电力系统继电保护和自动装置设计.doc(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、目录第一部分 设计任务与调研1第二部分 设计说明6第三部分 设计成果20第四部分 结束语25第五部分 致谢27第六部分 参考文献28第一章 电力系统继电保护和自动装盟的配置第一节 线路继电保护配置保护方式的选择对电力系统的安全运行有直接的影响。选择保护方式时,在满足继电保护“四性”要求的前提下,应力求采用简单的保护装置来达到系统提出的要求,只有当简单的保护不能满足要求时,才采用较复杂的保护。电力部颁发的继电保护和安全自动装置枝术规程规定,对110220kV、中性点直接接地电网中的线路,应装置反应接地短路和相间短路的保护。该规程又规定,电力设备和线路的短路保护应有主保护和后备保护,必要时可再增设
2、辅助保护。在110220kV中性点直接接地的电网中,线路的相间短路保护及单相接地短路保护均应动作于断路器使其跳闸。在下列情况下,应装设全线任何部分短路时均能速动的保护装置:根据系统稳定要求有必要时;线路发生三相短路故障,使厂用电或重要用户母线电压低于额定电压的60%,且其保护不能无时限和有选择地切除短路故障时;若某些线路采用全线速动保护能显着简化电力系统保护,并提高保护的选择性、灵敏性和速动性时。规程规定,ll0kV线路的后备保护宜采用远后备方式;220kV线路则宜采用近后备方式,如能实现远后备方式时,则宜采用远后备方式或同时采用远、近后备结合的方式。220kV线路的保护可按以下原则配置。对于
3、单侧电源单回路线路,可装设三相多段式电流电压保护作为相间短路的保护。但若不能满足灵敏度要求,则应装设多段式距离保护。对于接地短路,宜装设带方向性元件或不带方向性元件的多段式零序电流保护,对某些线路,若装设带方向性接地距离保护可以明显改善整个电力系统接地保护性能时,可装设接地距离保护,并辅之以多段式零序电流保护。对于双电源单回路线路,可装设多段式距离保护,若不能满足灵敏度和速动性要求时,则应加装高频保护作为主保护,把多段式距离保护作为后备保护。在正常运行方式下,若保护安装处短路且无时限电流速断保护装置能够动作时,可装设此种保护作为辅助保护。根据规程规定和系统的具体情况,选择220k/V线路保护时
4、作了如下考虑:由于本系统允许切除故障的时间为0.ls,为保证系统运行稳定,当220kV输电线路任何地点发生短路故障时,继电保护切除故障线路的时间都必须小于0.ls,因而,凡是不能在0.ls内切除全线路故障的保护装置都不宜作为主保护。基于这种考虑,对双电源供电的单回路线路和环网内的线路,宜采用高频保护作为主保护。具体而言,环网内的线路AB、AE、BE,双电源供电线路的CD线、DE线、EF线、FG线、GH线均采用高频保护作为主保护。后备保护采用距离保护作为相间短路保护,零序电流保护作为接地短路保护,对单侧电源的辐射线路HI线可按线路-变压器组考虑,从而可以采用较简单的保护,因此.对线路扣可选用距离
5、保护作为相间短路保护,零序电流保护作为接地短路保护。第二节 自动重合闸的配置在电力系统的故障中,大多数是送电线路特别是架空线路)的故障。运行经验表明,架空线路故障大都是瞬时性”的,在线路被断开以后再进行一次合闸能大大提高供电的可靠性。为此,在电力系统中采用了自动重合闸(缩写为ZCH)。即当断路器跳闸以后,这种装置能够自动地将断路器重新合闸。在电力系统中采用重合闸的技术经济效果,主要地可归纳如下:大大提高供电的可靠性,减少线路停电的次数.特别是对单侧电源的单回线路尤为显著;在高压输电钱路上采用重合闸,可以提高电力系统并列运行的稳定性;在电网的设计与建设过程中,有些情况下由于考虑重合闸的作用,可以
6、暂缓架设双回线路,以节约投资;对断路器本身,由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正作用。采用重合闸以后,当重合于永久性故障上时,它也将带来一些不利的影响,如:使电力系统又一次受到故障的冲击;使断路器的工作条件变得更加严重,因为它要在很短的时间内,连续切断两次短路电流。自动重合闸装置应按下列规定装设:在1kV及以上的架空线路和电缆与架空的混合线路中,当具有断路器时,应装设自动重合闸装置;旁路断路器和兼作旁路的母线联络断路器或分段断路器,宜装设自动重合闸装置;低压侧不带电源的降压变压器,应装设自动重合闸装置;必要时母线可装设自动重合闸装置。各种自动重合闸装置中,综合重合闸为较先进的
7、一种。本设计采用微机保护装置,系统中所有线路均装设综合重合闸。综合重合闸的一些基本原则:单相接地短路时跳开单相,然后进行单相重合,如重合不成功则跳开三相而不再进行重合。各种相间短路时跳开三相,然后进行三相重合,如重合不成功.仍跳开三相,面不再进行重合。当选相元件拒绝动作时,应能跳开三相并进行三相重合。对于非全相运行中可能误动作的保护,应进行可靠的闭锁,对于在单相接地时可能误动作的相间保护,应有防止单相接地误跳三相的措施。当一相跳开后重合闸拒绝动作时,为防止线路长期出现非全相运行,应将其他两相自动断开。任意两相的分相跳闸继电器动作后,应联跳第三相,使三相断路器均眺闸。无论单相或三相重合闸,在重合
8、不成功之后,均应考虑能加速切除三相.即实现重合闸后加速。在非全相运行过程中,如又发生另一相或两相的故障,保护应能有选择性地予以切除,上述故障如发生在单相重合闸的脉冲发出以前,则在故障切除后能进行三相重合。如发生在单相重合闸脉冲发出以后,则切除三相不再进行重合。对空气断路器或液压传动的油断路器,当气压或液压低至不允许实行重合闸时,应将重合闸回路自动闭锁,但如果在重合闸过程中下降到低于允许值时,则应保证重合闸动作的完成。在综合重合闸的接线中,应考虑能实现综合重合闸、只进行单相重合闸或三相重合闸以及停用重合闸的各种可能性。线路配置:主保护采用方向高频;后备保护距离保护作为相间短路保护,零序电流保护作
9、为接地短路保护。第三节 微机保护装置简介本系统采用WXB-15型微机高压线路保护装置。WXB-l5型系列装置是使用硬件实现的成套微机高压线路保护装置,适用于110kV500kV各电压等级的输电线路。主保护为快速方向高频保护。WXB-15型微机方向高频保护的推出,为同一回路配置相同硬件不同原理的双套主保护提供了可能。a. 本装置硬件特点采用了多单片机并行工作的硬件结构,装置设置了四个硬件完全相同的CPU插件,每个插件独立完成一种保护功能。采用电压频率转换原理构成的模数转换器,它具有工作稳定、精度高、接口简单和调试方便等优点。跳闸出口回路采用三取二方式,提高了整套保护装置的可靠性。采用液晶显示、菜
10、单操作、使人机对话更加简单、灵活。 具有RS232接口,可将全站微机保护就地联网。保护配置示意图如表1所示。表1 保护配置示意图CPUCPU1CPU2CPU3CPU4 保护功能型号高频距离高频零序高频负序方向高频相间距离接地距离零序综重WXB-15WXB-15Ab. 各种保护配置及其特点快速方向高频保护它是由突变量方向元件、零序和负序方向元件完成的快速方向高频保护构成WXB-l5系列微机保护装置的主保护,由CPU1实现保护功能,可选用允许式或闭锁式。突变量方向元件具有明确的方向性且动作迅速。距离保护它是由三段式相间距离和接地距离构成的距离保护作为各套保护的基本配置,由CPU,实现。用于切除出口
11、短路故障的快速I段的距离元件动作时间不大于llms,当系统发生第一次故障时,采用电压记忆保证方向性。若在振荡期间发生故障,刚采用负序方向元件把关,仅在出口完全三相对称短路时采用偏移特性。阻抗特性采用四边形特性。零序保护零序保护由CPU3实现,由四段全相运行时的零序保护和两段非全相运行时的不灵敏段零序保护构成。装置设置了3U0零序保护突变量闭锁元件,以防止CT断线时零序保护误动。综合重合闸综合重合闸由CPU.实现,设有单重、三笪、综重和停用四种方式,装置还设有M、N、P端子,以供外部不能选相的保护经本装置综重的选相元件选相跳闸。本装置各套保护均设有独立的选相元件,由相电流差突变量选相元件及阻抗选
12、相元件来实现。综重的选相元件仅供外部无选相能力的保护经本装置出口处时使用。c. 主要技术数据额定数据 直流电压:220V或110V (订货注明)交流电压:相电压:100/V开口电压:100V交流电流:5A或1A(订货注明)频率:50Hz整定范围 距离元件:0.0599.9电流元件:0.05A99.9A 时词元件:保护跳闸时间:接地故障为0l2s;相间故障为04.5s(其他为015.9s)。精确工作范围距离元件:精确工作电压0. 5V;.精确工作电流(0.120)In或(0.240) In。零序方向元件,最小动作电压2V(固定);最小动作电流0.1In。突变量方向元件:最小动作电压4V;最小动作
13、电流0.3In。第二章 电器主接线设计及主要电气设备的选择第一节 220KV电压级接线方式220KV有五回线路,预留一回备用,因而220KV母线的接线形式可选用双母线接线形式,双母线分段接线,双母线带旁母(设有专门旁路断路器)的接线形式。1双母线特点双母线接有两组母线,并且可以互为备用。每一电源和出线的回路,都装有一台断路器,有两组母线隔离开关,可分别与两组母线连接。两组母线之间的联络,通过母线联络断路器来(简称母联断路器)来QFC来实现。采用双母线接线,有两组母线后,使运行的可靠性和灵活性大为提高。其特点有:(1)供电可靠。(2)调度灵活。(3)扩建方便。我国的各级电压配电装置采用双母线的具
14、体条件如下:(1) 出线带电抗器的610KV配电装置;(2) 3560KV配电装置当出线回数超过8回时,或连接电源较多,负荷较大时,可采用双母线;(3) 110220KV配电装置当出线回数超过5回时,一般采用双母线。2 双母线分段优缺点双母线分段接线比双母线接线的可靠性更高,当一段工作母线发生故障后,在继电保护作用下,分段断路器先自动跳开,而后将故障段母线所连的电源回路的断路器跳开,该段母线所连的出线回路停电;随后,将故障母线所连的电源回路和出线回路切换备用母线上,即可恢复供电。这样,只是部分短时停电,而不必全部短期停电。虽然这种接线具有很高的可靠性和灵活性,但增加了母联断路器和分段断路器的数
15、量,配电装置接资较大。分段双母线的应用范围:(1)当配电装置的进线和出线总数为1216时,在一组母线上设置分段断路器;(2)当配电装置的进、出线总数达到17回以上时,在两组母线上设置分段断路器。3 双母线带旁母的特点带有专门旁路断路器的接线,多装了价高的断路器和隔离开关,增加了投资,然而这对于接入旁路母线的一路回数较多,且对供电可靠性有特殊需要的场合是十分必要的。不采用专用旁路母线的接线,虽然可以节约建设投资,但是检修出线断路器的倒闸操作十分繁杂,而且对于无论是单母线分段接线还是双母线接线,在检修期间均处于单母线不分段运行状况,极大地降低了可靠性。单母线带有专用旁路断路器的旁路母线接线极大地提
16、高了可靠性,便这增加了一台旁路断路器的投资。第二节 所用电接线所用电接线的原则是:所用电接线应保证对所用负荷可靠和连续供电;接线能灵活地适应正常、事故、检修等各种运行方式的要求;设计时还应适当注意其经济性和发展的可能性并积极慎重地采用新技术、新设备,使所用接线具有可行性和先进性;在设计所用电接线时,还应对所用电的电压等级、中性点接地方式、所用电源及其引接和所用电接线形式等问题进行分析和论证。所用负荷根据供电重要性可分为三类:经常连续、短时不经常、连续不经常。所用电系统接线通常都采用单母线分段接线形式,并多以成套配电装置接受和分配电能。第三节 高压断路器机隔离开关的选择说明1、变压器220KV侧
17、断路器及隔离开关的选择最大持续工作电流为Imax=1.05SN/31/2/UN=1.05150/31/2/220=0.41KA查表可选SW6220/1200型少油断路器短路时间:tk=0.06+0.06+0.06=0.18A周期分量热效应:QP=非周期分量热效应:QnP=短路电流的热效应:Qk= QP+Qnp=SW6220/1200型断路器GW6220D/1000-50型隔离开关UN 220KVIN 1200AInbr 21KAIncl 55KAItt2 2124=1764KA2Sies 55KAUN 220KVIN 1000AItt2 2124=1764KA2Sies 55KA2、220KV
18、进线断路器及隔离开关选择最大负荷电流为:Imax=1.05SN/31/2UN=1.05213/31/2/220=0.58KA查表可选SW6220/1200型少油断路器SW6220/1200型断路器GW6220D/1000-50型隔离开关UN 220KVIN 1200AInbr 21KAIncl 55KAItt2 2124=1764KA2Sies 55KAUN 220KVIN 1000AItt2 2124=1764KA2Sies 55KA第四节 母线的选择1220KV侧母线的选择最大工作电流为:0.41KA J=1.07S=4102/1.07=766mm2故可选择2根型号为LGJ400/20的导
19、线,其载流量为1600A。2.220KV侧进线的选择最大工作电流为: Imax=0.41KAS=410/1.07=383mm2故可选择1根型号为LGJ400/20的导线,其载流量为800A。第三章 系统运行方式的制定和变压器中性接地点的选择第一节 系统运行方式的制定在选择保护方式及进行整定计算时,都必须考虑系统运行方式变化带来的影响,所选用的保护方式应在各种运行方式下,都能满足选择性和灵敏性的要求。对过量保护来说,通常都是根据系统最大运行方式来确定保护的整定值,以保证选择性,因为只要在最大运行方式下能保证选择性,在其他运行方式下也一定能保证选择性。灵敏度的校验应根据最小运行方式来进行,因为只要
20、在最小运行方式下,灵敏度符合要求,在其他运行方式下,灵敏度也一定满足要求,对某些保护(如电流电压联锁速断保护和电流速断保护),在整定计算时还要按正常运行方式来决定动作值或计算灵敏度。a. 最大运行方式根据系统最大负荷的需要,电力系统中的发电设备都投入运行(或大部分投入运行)且选定的接地中性点全部接地的系统运行方式称为最大运行方式。对继电保护来说,是短路时通过保护的短路电流最大的运行方式。b. 最小运行方式根据系统最小负荷,投入与之相适应的发电设备,且系统中性点只有少部分接地的运行方式为最小运行方式。在有水电厂的系统中,要考虑水电厂运行受水能状态限制的运行方式。对继电保护来说,是短路时通过保护的
21、短路电流最小的运行方式。c. 正常运行方式根据系统正常负荷的需要,投入与之相适应数量的发电机、变压器和线路的运行方式称为正常运行方式。这种运行方式在一年内的运行时间最长。规定下列运行方式:I:电厂A、H、D、B所有机组和变压器均投入运行。A系统、D系统按最大容量发电,选定的接地中性点全部接地,环网闭环运行。I1:在I基础上AE停运;I2:在I基础上BE停运:I3:在I基础上AB停运;II:电厂B、D、H停一半机组,I、II系统按最小容量发电,电厂A停1100和150机组,调相机停一半,各站变压器均停一半(按与电厂容量配合原则)闭环运行。II1:在II基础上A停运。线路运行方式如表2所示。表2
22、线路的运行方式示意线 路名称最大运行方式最小运行方式A BA侧保护: I2 B侧:I1IIA EA侧: I2 E侧:I3IIB EB侧: I1 E侧:I3IIC DIIID EIIIE FIIIF GIIIG HIIIH IIII第二节 变压器中性接地点的选择大接地系统发生接地短路时,零序电流的大小与分布和变压器中性接地点的数目与位置有密切的关系,中性接地点的数目越多,意味着系统零序总阻抗越小,零序电流越大,中性接地点的位置不同,则意味着零序电流的分布不同。通常,变压器中性接地位置和数目按以下两个原则考虑:一是使零电流保护装置在系统的各种运行方式下保护范围基本保持不变,且具有足够的灵敏度和可靠
23、性;二是不使变压器承受危险的过电压,为此,应使变压器中性点接地数目和位置尽可能保持不变。变压器中性接地点的位置和数目的具体选择原则如下:a. 对单电源系统,线路末端变电站的变压器一般不应接,这样可以提高线路首端零序电流保护的灵敏度。b. 对多电源系统,要求每个电源点都有一个中性点接地,以防接地短路的过电压对变压器产生危害。c. 当一个变电站有多台变压器运行时,应将一部分变压器中性点接地,另一部分不接地。这样,当接地运行的变压器检修停运时,不接地变压器可以接地运行,从而使接地点的数目和位置相对不变。d. 对有三台以上变压器的220kV或110kV双母线运行的发电厂,一般按两台变压器中性点直接接地
24、运行,并把它们分别接于两组不同母线上,当其中一台中性点接地变压器停用时,将另一台不接地的变压器的中性点直接接地。系统中HI线路属于单电源供电,其线路末端变压器不接地。调相机35kV侧变压器中的性点不接地,除此之外,变压器均采用部分接地方式,一台变压器中性点接地,另一台变压器中性点不接地。变压器中性点接地情况如表3所示。表3 变压器中性点接地情况表变 电 站 名 称ABDEFGHI变压器台数42222221220kV侧中性点接地变压器台数21111110第四章 系统最大负荷的潮流分布第一节 系统中各元件的主要参数计算系统中各元件的参数标么植时,取基准视在功率SR=100MVA,基准电压UR=Ua
25、N=230kV,其准电流IR=SR/UR=0.251kA,基准电抗XR=U/SR=2302/100=529。a. 发电机及等值系统的参数表4 发电机及等值系统的参数电机或系统名称电厂及系统的总容量/MVA每台机额定功率P/MVA额定电压Ue/KV定额功率因数cos正序电抗负序电抗最大最小%标么值%标么值A厂300150210025010.50.800.8518.3312.390.1560.198240.1900.2419B厂804042010.50.8015.10.6040.8758D厂200100210010.50.8518.330.1560.190H厂250125212513.80.852
26、1.50.1460.178I 系统800.5241150.850.27(0.524)0.3294(0.639)II 系统2001502300.850.31(0.35)0.3782(0.427)E站60302301118.70.62318.50.617F站60302301118.70.62318.50.617注 表中,括号内的数据为最小运行方式时的电抗标么值。负序电抗按下列情况计算:对水电厂(B)的发电机,X2=1.45Xd,对系统的汽轮发电机(A、C、H、D)和I、II系统,X2=1.22Xd。计算举例:对凝汽式火电厂A、机组容量Sel=50/0.8=62.5MVA,Se2=100/0.85=
27、117.647MVA。250MW的机组:正序电抗xd=12.39,折合到230kV的基准值正序的标么电抗值为XF1=0.19824负序电抗标么值为X2=1.220.19824=0.24192100MW的机组:正序电抗xd=18.33,折合到230kV的基准值正序电抗标么值为XF2=0.156负序电抗标么值为X2=1.220.156=0.190对B,一有多年调节水库的梯级电站,机组容量Se=20/0.8=25MVA。正序电抗xd=15.1,折合到230kV的基准值正序电抗标么值为XF3=0.604b. 变压器的参数及计算举例闸管变流设备一般都是通过变压器与电网连接的,因此其工作频率为工频初级电压
28、即为交流电网电压。经过变压器的耦合,晶闸管主电路可以得到一个合适的输入电压,是晶闸管在较大的功率因数下运行。变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分,减小电网污染。在变流电路所需的电压与电网电压相差不多时,有时会采用自耦变压器;当变流电路所需的电压与电网电压一致时,也可以不经变压器而直接与电网连接,不过要在输入端串联“进线电抗器”以减少对电网的污染。变压器的参数计算之前,应该确定负载要求的直流电压和电流,确定变流设备的主电路接线形式和电网电压。先选择其次级电压有效值U2,U2数值的选择不可过高和过低,如果U2 过高会使得设备运行中为保证输出直流电压符合要求而导致控
29、制角过大,使功率因数变小;如果U2过低又会在运行中出现当=min时仍然得不到负载要求的直流电压的现象。通常次级电压、初级和次级电流根据设备的容量、主接线结构和工作方式来定。由于有些主接线形式次级电流中含有直流成分,有的又不存在,所以变压器容量(视在功率)的计算要根据具体情况来定。变压器次级相电压U2的计算整流器主电路有多种接线形式,在理想情况下,输出直流电压Ud 与变压器次级相电压U2有以下关系d UV B U K U K 2 = (5.39)其中KUV为与主电路接线形式有关的常数;KB为以控制角为变量的函数,设整流器在控制角=0和控制角不为0 时的输出电压平均值分别为Ud0和Ud,则KUV=
30、 Ud0/ U2,KB=Ud/Ud0。在实际运行中,整流器输出的平均电压还受其它因素的影响,主要为:电网电压的波动。整流元件(晶闸管)的正向压降。直流回路的杂散电阻。换相重叠角引起的电压损失。整流变压器电阻的影响。 变压器次级相电流有效值I2的计算一般的工业生产用晶闸管设备的负载都为电感性的,负载电流基本上是直流,因而晶闸管电流为方波。变 压器的各相绕组与一个(半波)或两个(桥式)晶闸管连接,所以变压器次级电流也为方波,其有效值I2与负载电流Id成正比关系,比例系数决定于电路的接线形式,所以 (1)如果负载为电阻性,则负载电流、晶闸管电流和变压器次级电流都不是方波,不能采用上式计算,要通过电路
31、分析求取电流的方均根值。如果是电动机负载,式(1)中的Id应取电动机的额定电流而不是堵转电流,因为堵转电流仅出现在启动后的很短的一段时间,这段时间变压器过载运行是允许的。变压器次级相电流有效值I1的计算整流变压器的初、次级电流都是非正弦波,对于不同的主电路接线形式两者的关系是不一样的。主电路为桥式接线时变压器次级绕组电流中没有直流分量,初、次级电流的波形相同,其有效值之比就是变压器的变比Kn。在半波电路中,变压器的次级电流是单方向的,包含着直流分量Id2和交流分量Ia2,i2= id2+ ia2,而直流成分是不能影响初级电流i1的。i1仅与ia2有关,i1= ia2/Kn。现以三相半波电路为例
32、说明初级电流的计算方法。设负载为电感性,电感量足以消除负载电流的波动,i2的波形如图5-11 所示。次级电流的有效值为/ 3 2 d I = I ,次级电流中的直流成分为/ 3 d 2 d I = I ,根据电路理论,次级电流中的交流成分有效值为 ( 2)初级电流与次级交流电流之间成正比关系,为(3)当变比为1时,I1与Ia2之间的关系称为网侧电流变换系数KI1,I1可表示为变压器容量的计算变压器的容量即变压器的视在功率,对于绕组电流中含有直流成分的变压器,由于初、次级的电流有效值之比不是变压器的变比,而两侧的电压之比却为变比,所以初级和次级的容量是不同的。设变压器初级容量为S1、次级容量为S
33、2;初级和次级的相数分别为n1和n2,初、次级容量的计算公式分别为 (5) (6)变压器的等效容量为初、次级容量的平均值,为S= (7)c. 输电线路的参数及计算举例d. 电流互感器和电压互感器变化电压互感器是一种可以将高电压变为低电压,用于测量和保护回路中,我国规定PT的二次电压为100V,一次电压根据实际需要进行选择。其实PT也就相当于一个降压变压器的作用,由于在出厂时已经进行了封装,因此生产出的成品其变比是固定的,不可改变第二节 系统潮流分布估算为了确定各线路的最大负荷电流并选择电流互感器的变化,应计算系统在最大开机情况下的潮流分布。为了简便,不计线路损耗。潮流分布计算结果如表5所示。表
34、5 系统潮流分布和L1变比的选择线路名称最大开机情况下的潮流分布/MVA最大负荷电流/kAL1的变化nLA B160+j112.9490.492600/5A E228+j175.0920.7221 200/5B E228+j175.0920.7221 200/5D C30+j18.6430.089600/5D E170+j105.3060.502600/5E F170+j120.0640.522600/5G F30j5.0640.076600/5H G17+j104.9360.501600/5H I80+j500.237600/5注:表中线路名称的第一个字母表示送端,如线路HI表示功率的方向从
35、H变电站送到I变电站。第五章 最大负荷电流及短路电流计算结果第一节 各支路最大负荷电流1. 已知系统的化简取Sj=500MVA,220KV线路电抗为0.4/KmXL1=.0.4100500/2202=0.413XL2=0.4120500/2202=0.496XL3=0.490500/2202=0.372XL4=0.480500/22020.5=0.165XC1=0.42500/1000=0.21XC2=0.38500/500=0.48XC3=0.34500/1500=0.113将整个系统化简,计算出总电抗为0.1592. 变压器阻抗的计算UK1-2%=25.4% UK1-3%=15.5% UK
36、2-3%=7.92%UK1%=1/2(UK1-2%+UK1-3%-UK2-3%=1/2(25.4+15.5-7.92)%=16.49%UK2%=1/2(UK1-2%+UK2-3%-UK1-3%=1/2(25.4+7.92-15.5)%=8.91%UK3%=1/2(UK2-3%+UK1-3%-UK1-2%=1/2(7.92+15.5-25.4)%=-1.98%UK%=5.5%XT1=UK1%UN2/100SNSj/SN=16.492202/(100150) 500/150=0.55XT2=UK2%UN2/100SNSj/SN=8.912202/(100150) 500/150=0.297XT3=
37、UK3%UN2/100SNSj/SN=-1.982202/(100150) 500/150=0.066XT4=UK4%UN2/100SNSj/SN=N2202/(10015010-3) 500/63010-3=43.65第二节 正序、负序、零序等值阻抗图根据系统中各元件参数计算结果和变压器中性点接地的情况,本系统的正序等值阻抗图如图2.7所示。图1: 正序等值阻抗图第三节 短路电流计算结果短路电流计算主要对各线路在最大、最小运行方式下的短路进行计算。短路类型分为三相短路、二相短路、二相短路接地和单相短路接地。为了校验零序I段的保护范围,在各线路中点短路,然后求此线路在单相短路接地,两相短路接地
38、时流过保护的零序电流。此外,还有距离保护和零序电流保护最大、最小分支系数的求取,求取时需要针对具体保护,考虑开机情况及断线与否,不考虑联络线的断线问题(联络线断开,则系统分裂为两个独立的部分)。短路电流计算结果如表6 所示(表中KK=0.5,表示保护线路中点短路保障)。表6 线路AB的短路电流计算结果 保护侧 故障点 序 短 电运行方式 路电流 流流过B侧保护的电流/kA流过A侧保护的电流/kAA母线故障KK=0.5B母线故障KK=0.5Id1Id2Id33Id0Id1Id2Id33Id0最大运行方式d(3)2.0542.6766d(2)1.0271.0271.33831.3383d(1)0.
39、67870.67870.83621.37070.65550.65552.25823.1785d(1.1)1.36330.69030.82911.17321.59741.07921.78482.6619最小运行方式d(3)1.13101.5133d(2)0.56550.56550.75660.7566d(1)0.42990.42990.53291.02230.47120.47121.62152.3121d(1.1)0.81560.31540.61991.00650.97760.53561.52122.2765第六章 继电保护装置的整定计算及校验第一节 高频保护的整定计算原则系统中发生故障时,高频
40、保护将某种电量(简称判别量)转换为高频电波,再借助于通常传给对侧,然后,线路每一侧按照对侧与本侧判别量之间的关系来判断区内或区外故障。由于选取的判别量不同,判别量的传送方式和采用通道的情况不同,出现了各种型号的高频保护装置。目前广泛采用的高频保护按其工作原理的不同可以分为两大类,即方向高频保护和相差高频保护。方向高频保护的原理是比较被保护线路两端的功率方向;相差高频保护的原理是比较两端电流的相位,本系统采用方向高频保护。高频保护要以两侧判别量之间的关系来判断故障的性质,因此,线路两侧的高频保护相当于一个整体,必须同时运行。为了使保护具有良好的动作特性,要求线路两侧电流互感器的变比和型号相同,两
41、侧保护的型号相同,保护装置的整定值也相同。高频负序功率方向保护的原理框图如图2.8所示。它的主要组成元件有两个,一个是起动元件,它在外部故障时起动发读机;另一个是方向元件,它在正向适中时准备好跳闸回路。起动元件采用反向(方向由线路指向母线)负序功率方向继电器KA_,方向元件采用正向(方向由母线指向线路)负序功率方向继电器KA+,为提高保护的可靠性,加装了负序电流元件I2,在内部故障时,KA不动作,外部故障时,近故障侧的KA_动作,发出高频信号闭锁两侧表保护,使之不跳闸。这种保护的结构比较简单,需进行整定计算的动作参数主要有起动元件KA_,方向元件KA+和负序电流元件I2三者的动作值,其整定办法
42、如下所述。图2 高频闭锁负序功率方向保护原理框图正向负序功率元件KA+的整定采用相敏负序功率元件时,正向负序功率元件的整定可简化为按负序电流进行计算。其整定值按下述两条件确定并选其中较大者。保证被保护线路末端故障时有足够的灵敏度 Idz(+)= (2.1)式中,I2min为被保护线路末端短路时,流经本侧的最小负序电源;躲开空载线路两相先合闸时出现的稳态负序电容电流(I2c) Idz(+)=KkI2cL (2.2)式中,Kk为计及负序电容电流暂态过程的可靠系数,取2.53; L为被保护线路的全长,以km计。 I2c为线路一侧投入电源时,由于三相触头不同时合闸引起的负序电容电流每公里长度的稳态值。查表可知,线路电压为220kV 等级,此时二相先合闸时的充电电容电流值为0.127A/km。第二节 距离保护的整定计算原则距离保护是以反映从故障点到保护安装处之间阻抗大小的,阻抗继电器为主要元件,动作时限具有阶梯特性的保护装置。当故障点至保护安装处之间的实际阻抗小于整定值时,故障点发生在保护范围之内,保护动作。配上方向元件及时间元件,即组成了具有阶梯特性的距离保护装置。当故障线路中的电流大于阻抗继电器的允许精工电流时,保护装置的动作性能与通过保护装置的故障电流大小无关。距离保护的整定计算 距离段的整定计算:当被