《高一数学函数学问点.docx》由会员分享,可在线阅读,更多相关《高一数学函数学问点.docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一数学函数学问点 在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。下面是我整理的高一数学函数学问点,仅供参考,盼望能够关心到大家。 高一数学函数学问点 高一数学函数学问点归纳 1、函数:设A、B为非空集合,假如根据某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数,写作y=f(x),xA,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B=f(x)xA 叫做函数的值域。 2、函数定义域的解题思路: 若x
2、处于分母位置,则分母x不能为0。 偶次方根的被开方数不小于0。 对数式的真数必需大于0。 指数对数式的底,不得为1,且必需大于0。 指数为0时,底数不得为0。 假如函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。 实际问题中的函数的定义域还要保证明际问题有意义。 3、相同函数 表达式相同:与表示自变量和函数值的字母无关。 定义域全都,对应法则全都。 4、函数值域的求法 观看法:适用于初等函数及一些简洁的由初等函数通过四则运算得到的函数。 图像法:适用于易于画出函数图像的函数已经分段函数。 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的
3、形式。 代换法:主要用于由已知值域的函数推想未知函数的值域。 5、函数图像的变换 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。 伸缩变换:在x前加上系数。 对称变换:高中阶段不作要求。 6、映射:设A、B是两个非空集合,假如按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:AB为从集合A到集合B的映射。 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。 集合A中的不同元素,在集合B中对应的象可以是同一个。 不要求集合B中的每一个元素在集合A中都有原象。 7、分段函数 在定义域的不同部分上有不同的解析式表达式。 各部分自变量和函数值的取值范围不同。 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。 8、复合函数:假如(uM),u= 高一数学函数学问点