《数学高二水平考学问点精选.docx》由会员分享,可在线阅读,更多相关《数学高二水平考学问点精选.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学高二水平考学问点精选 同学在平常多练习、多总结数学学问点,这样可以为自己的学业水平考做好铺垫。下面就是我给大家带来的高中数学学业水平考学问点,盼望能关心到大家! 高中数学学业水平考学问点1 集合常用大写拉丁字母来表示,如:A,B,C而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c拉丁字母只是相当于集合的名字,没有任何实际的意义。 将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A=的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。 常用的有列举法和描述法。 1.列举法常用于表示有限集合,把集合中的全部元素一一列举出来写在大括号内这种表
2、示集合的方法叫做列举法。1,2,3, 2.描述法常用于表示无限集合,把集合中元素的公共属性用文字符号或式子等描述出来写在大括号内这种表示集合的方法叫做描述法。x|P(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于的正实数组成的集合表示为:x|0 3.图示法(venn图)为了形象表示集合,我们经常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。集合 自然语言常用数集的符号: (1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N_ (2)非负整数集内排解0的集,也称正整数集,记作Z+;负整数集内也排解0的集,称负整数集,记作Z-
3、 (3)全体整数的集合通常称作整数集,记作Z (4)全体有理数的集合通常简称有理数集,记作Q。Q=p/q|pZ,qN,且p,q互质(正负有理数集合分别记作Q+Q-) (5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-) (6)复数集合计作C集合的运算:集合交换律AB=BAAB=BA集合结合律(AB)C=A(BC)(AB)C=A(BC)集合安排律A(BC)=(AB)(AC)A(BC)=(AB)(AC)集合德.摩根律集合 Cu(AB)=CuACuBCu(AB)=CuACuB集合“容斥原理”在讨论集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为car
4、d(A)。 集合汲取律A(AB)=AA(AB)=A集合求补律ACuA=UACuA=设A为集合,把A的全部子集构成的集合叫做A的幂集德摩根律A-(BUC)=(A-B)(A-C)A-(BC)=(A-B)U(A-C)(BUC)=BC(BC)=BUC=EE=特别集合的表示复数集C实数集R正实数集R+负实数集R-整数集Z正整数集Z+负整数集Z-有理数集Q正有理数集Q+负有理数集Q-不含0的有理数集Q_ 高中数学学业水平考学问点2 假如直线a与平面平行,那么直线a与平面内的直线有哪些位置关系? 平行或异面。 若直线a与平面平行,那么在平面内与直线a平行的直线有多少条?这些直线的位置关系如何? 很多条;平行
5、。 假如直线a与平面平行,经过直线a的平面与平面相交于直线b,那么直线a、b的位置关系如何?为什么? 平行;由于a,所以a与没有公共点,则a与b没有公共点,又a与b在同一平面内,所以a与b平行。 综上分析,在直线a与平面平行的条件下我们可以得到什么结论? 假如一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 高中数学学业水平考学问点3 (1)总体和样本 在统计学中,把讨论对象的全体叫做总体. 把每个讨论对象叫做个体. 把总体中个体的总数叫做总体容量. 为了讨论总体的有关性质,一般从总体中随机抽取一部分:x1,x2,.,讨论,我们称它为样本.其中个体的个数称为样本容量.
6、 (2)简洁随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无肯定的关联性和排斥性。简洁随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采纳这种方法。 (3)简洁随机抽样常用的方法: 抽签法 随机数表法 计算机模拟法 在简洁随机抽样的样本容量设计中,主要考虑: 总体变异状况; 允许误差范围; 概率保证程度。 (4)抽签法: 给调查对象群体中的每一个对象编号; 预备抽签的工具,实施抽签; 对样本中的每一个个体进行测量或调查 高中数学学业
7、水平考学问点4 一、直线与圆: 1、直线的倾斜角的范围是 在平面直角坐标系中,对于一条与轴相交的直线,假如把轴围着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0; 2、斜率:已知直线的倾斜角为,且90,则斜率k=tan. 过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。 3、直线方程:点斜式:直线过点斜率为,则直线方程为, 斜截式:直线在轴上的截距为和斜率,则直线方程为 4、直线与直线的位置关系: (1)平行A1/A2=B1/B2留意检验(2)垂直A1A2+B1B2=
8、0 5、点到直线的距离公式; 两条平行线与的距离是 6、圆的标准方程:.圆的一般方程: 留意能将标准方程化为一般方程 7、过圆外一点作圆的切线,肯定有两条,假如只求出了一条,那么另外一条就是与轴垂直的直线. 8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.相离相切相交 9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长 高中数学学业水平考学问点5 (1)指数函数的定义域为全部实数的集合,这里的前提是a大于0,对于a不大于0的状况,则必定使得函数的定义域不存在连续的区间,因
9、此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个明显的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)明显指数函数无界。 奇偶性 定义 一般地,对于函数f(x) (1)假如对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)假如对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)假如对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)假如对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 数学高二水平考学问点精选