5-1 向量的内积.ppt

上传人:gsy****95 文档编号:85133425 上传时间:2023-04-10 格式:PPT 页数:31 大小:1.64MB
返回 下载 相关 举报
5-1 向量的内积.ppt_第1页
第1页 / 共31页
5-1 向量的内积.ppt_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《5-1 向量的内积.ppt》由会员分享,可在线阅读,更多相关《5-1 向量的内积.ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、定义定义1 1内积内积一、内积的定义及性质一、内积的定义及性质说明说明1 维向量的内积是维向量的内积是3维向量数量积维向量数量积的推广,但是没有的推广,但是没有3维向量直观的几何意义维向量直观的几何意义内积的运算性质内积的运算性质定义定义2 2 令令长度长度范数范数向量的长度具有下述性质:向量的长度具有下述性质:二、向量的长度及性质二、向量的长度及性质解解单位向量单位向量夹角夹角 正交的概念正交的概念 正交向量组的概念正交向量组的概念正交正交若一非零向量组中的向量两两正交,则称该向若一非零向量组中的向量两两正交,则称该向量组为正交向量组量组为正交向量组三、正交向量组的概念及求法三、正交向量组的

2、概念及求法证明证明 正交向量组的性质正交向量组的性质例例1 1 已知三维向量空间中两个向量已知三维向量空间中两个向量正交,试求正交,试求 使使 构成三维空间的一个正交构成三维空间的一个正交基基.向量空间的正交基向量空间的正交基即即解之得解之得由上可知由上可知 构成三维空间的一个正交基构成三维空间的一个正交基.则有则有解解 规范正交基规范正交基例如例如 同理可知同理可知(1)正交化正交化,取,取 ,求规范正交基的方法求规范正交基的方法(2)单位化单位化,取,取例例 用施密特正交化方法,将向量组用施密特正交化方法,将向量组正交规范化正交规范化.解解 先先正交化正交化,取取施密特正交化过程施密特正交

3、化过程再再单位化单位化,得规范正交向量组如下得规范正交向量组如下例例解解再把它们单位化,取再把它们单位化,取几何解释几何解释例例解解把基础解系正交化,即合所求亦即取把基础解系正交化,即合所求亦即取证明证明定义定义4 4定理定理四、正交矩阵与正交变换四、正交矩阵与正交变换 为正交矩阵的充要条件是为正交矩阵的充要条件是 的列向量都的列向量都是单位向量且两两正交是单位向量且两两正交性质性质 正交变换保持向量的长度不变正交变换保持向量的长度不变证明证明例例 判别下列矩阵是否为正交阵判别下列矩阵是否为正交阵定义定义5 5 若若 为正交阵,则线性变换为正交阵,则线性变换 称为正称为正交变换交变换解解所以它不是正交矩阵所以它不是正交矩阵考察矩阵的第一列和第二列,考察矩阵的第一列和第二列,由于由于所以它是正交矩阵所以它是正交矩阵由于由于例例解解1 1将一组基规范正交化的方法:将一组基规范正交化的方法:先用施密特正交化方法将基正交化,然后再将先用施密特正交化方法将基正交化,然后再将其单位化其单位化五、小结五、小结2 2 为正交矩阵的充要条件是下列条件之一成立:为正交矩阵的充要条件是下列条件之一成立:求一单位向量,使它与求一单位向量,使它与正交正交思考题思考题思考题解答思考题解答

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁