《数字信号处理第一章答案.ppt》由会员分享,可在线阅读,更多相关《数字信号处理第一章答案.ppt(78页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、时域离散信号和时域离散系统第 1 章1.4习题与上机题解答习题与上机题解答1.用单位脉冲序列(n)及其加权和表示题1图所示的序列。题1图时域离散信号和时域离散系统第 1 章解:x(n)=(n+4)+2(n+2)(n+1)+2(n)+(n1)+2(n2)+4(n3)+0.5(n4)+2(n6)2 给定信号:2n+54n160n40 其它(1)画出x(n)序列的波形,标上各序列值;(2)试用延迟的单位脉冲序列及其加权和表示x(n)序列;(x(n)=时域离散信号和时域离散系统第 1 章(3)令x1(n)=2x(n2),试画出x1(n)波形;(4)令x2(n)=2x(n+2),试画出x2(n)波形;(
2、5)令x3(n)=x(2n),试画出x3(n)波形。解解:(1)x(n)序列的波形如题2解图(一)所示。(2)x(n)=3(n+4)(n+3)+(n+2)+3(n+1)+6(n)+6(n1)+6(n2)+6(n3)+6(n4)时域离散信号和时域离散系统第 1 章(3)x1(n)的波形是x(n)的波形右移2位,再乘以2,画出图形如题2解图(二)所示。(4)x2(n)的波形是x(n)的波形左移2位,再乘以2,画出图形如题2解图(三)所示。(5)画x3(n)时,先画x(n)的波形(即将x(n)的波形以纵轴为中心翻转180),然后再右移2位,x3(n)波形如题2解图(四)所示。时域离散信号和时域离散系
3、统第 1 章题2解图(一)时域离散信号和时域离散系统第 1 章题2解图(二)时域离散信号和时域离散系统第 1 章题2解图(三)时域离散信号和时域离散系统第 1 章题2解图(四)时域离散信号和时域离散系统第 1 章3 判断下面的序列是否是周期的;若是周期的,确定其周期。(1)(2)解解:(1)因为=,所以,这是有理数,因此是周期序列,周期T=14。(2)因为=,所以=16,这是无理数,因此是非周期序列。时域离散信号和时域离散系统第 1 章4 对题1图给出的x(n)要求:(1)画出x(n)的波形;(2)计算xe(n)=x(n)+x(n),并画出xe(n)波形;(3)计算xo(n)=x(n)x(n)
4、,并画出xo(n)波形;(4)令x1(n)=xe(n)+xo(n),将x1(n)与x(n)进行比较,你能得到什么结论?时域离散信号和时域离散系统第 1 章解解:(1)x(n)的波形如题4解图(一)所示。(2)将x(n)与x(n)的波形对应相加,再除以2,得到xe(n)。毫无疑问,这是一个偶对称序列。xe(n)的波形如题4解图(二)所示。(3)画出xo(n)的波形如题4解图(三)所示。时域离散信号和时域离散系统第 1 章题4解图(一)时域离散信号和时域离散系统第 1 章题4解图(二)时域离散信号和时域离散系统第 1 章题4解图(三)时域离散信号和时域离散系统第 1 章(4)很容易证明:x(n)=
5、x1(n)=xe(n)+xo(n)上面等式说明实序列可以分解成偶对称序列和奇对称序列。偶对称序列可以用题中(2)的公式计算,奇对称序列可以用题中(3)的公式计算。5 设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出,判断系统是否是线性非时变的。(1)y(n)=x(n)+2x(n1)+3x(n2)(2)y(n)=2x(n)+3 (3)y(n)=x(nn0)n0为整常数 (4)y(n)=x(n)时域离散信号和时域离散系统第 1 章(5)y(n)=x2(n)(6)y(n)=x(n2)(7)y(n)=(8)y(n)=x(n)sin(n)解解:(1)令输入为x(nn0)输出为 y
6、(n)=x(nn0)+2x(nn01)+3x(nn02)y(nn0)=x(nn0)+2x(nn01)+3(nn02)=y(n)时域离散信号和时域离散系统第 1 章故该系统是非时变系统。因为 y(n)=Tax1(n)+bx2(n)=ax1(n)+bx2(n)+2ax1(n1)+bx2(n1)+3ax1(n2)+bx2(n2)Tax1(n)=ax1(n)+2ax1(n1)+3ax1(n2)Tbx2(n)=bx2(n)+2bx2(n1)+3bx2(n2)所以 Tax1(n)+bx2(n)=aTx1(n)+bTx2(n)故该系统是线性系统。时域离散信号和时域离散系统第 1 章(2)令输入为x(nn0)
7、输出为y(n)=2x(nn0)+3y(nn0)=2x(nn0)+3=y(n)故该系统是非时变的。由于Tax1(n)+bx2(n)=2ax1(n)+2bx2(n)+3Tax1(n)=2ax1(n)+3Tbx2(n)=2bx2(n)+3Tax1(n)+bx2(n)aTx1(n)+bTx2(n)故该系统是非线性系统。时域离散信号和时域离散系统第 1 章(3)这是一个延时器,延时器是线性非时变系统,下面证明。令输入为x(nn1)输出为y(n)=x(nn1n0)y(nn1)=x(nn1n0)=y(n)故延时器是非时变系统。由于Tax1(n)+bx2(n)=ax1(nn0)+bx2(nn0)=aTx1(n
8、)+bTx2(n)故延时器是线性系统。时域离散信号和时域离散系统第 1 章(4)y(n)=x(n)令输入为x(nn0)输出为y(n)=x(n+n0)y(nn0)=x(n+n0)=y(n)因此系统是线性系统。由于Tax1(n)+bx2(n)=ax1(n)+bx2(n)=aTx1(n)+bTx2(n)因此系统是非时变系统。时域离散信号和时域离散系统第 1 章(5)y(n)=x2(n)令输入为 x(nn0)输出为y(n)=x2(nn0)y(nn0)=x2(nn0)=y(n)故系统是非时变系统。由于 Tax1(n)+bx2(n)=ax1(n)+bx2(n)2 aTx1(n)+bTx2(n)=ax21(
9、n)+bx22(n)因此系统是非线性系统。时域离散信号和时域离散系统第 1 章(6)y(n)=x(n2)令输入为x(nn0)输出为y(n)=x(nn0)2)y(nn0)=x(nn0)2)=y(n)故系统是非时变系统。由于Tax1(n)+bx2(n)=ax1(n2)+bx2(n2)=aTx1(n)+bTx2(n)故系统是线性系统。时域离散信号和时域离散系统第 1 章(7)y(n)=x(m)令输入为x(nn0)输出为 y(n)=0DD)x(m-n0)y(nn0)=x(m)y(n)故系统是时变系统。由于Tax1(n)+bx2(n)=ax1(m)+bx2(m)=aTx1(n)+bTx2(n)故系统是线
10、性系统。时域离散信号和时域离散系统第 1 章(8)y(n)=x(n)sin(n)令输入为x(nn0)输出为y(n)=x(nn0)sin(n)y(nn0)=x(nn0)sin(nn0)y(n)故系统不是非时变系统。由于Tax1(n)+bx2(n)=ax1(n)sin(n)+bx2(n)sin(n)=aTx1(n)+bTx2(n)故系统是线性系统。时域离散信号和时域离散系统第 1 章6 给定下述系统的差分方程,试判定系统是否是因果稳定系统,并说明理由。(1)y(n)=x(nk)(2)y(n)=x(n)+x(n+1)(3)y(n)=x(k)(4)y(n)=x(nn0)(5)y(n)=ex(n)时域离
11、散信号和时域离散系统第 1 章解解:(1)只要N1,该系统就是因果系统,因为输出只与n时刻的和n时刻以前的输入有关。如果|x(n)|M,则|y(n)|M,因此系统是稳定系统。(2)该系统是非因果系统,因为n时间的输出还和n时间以后(n+1)时间)的输入有关。如果|x(n)|M,则|y(n)|x(n)|+|x(n+1)|2M,因此系统是稳定系统。(3)如果|x(n)|M,则|y(n)|x(k)|2n0+1|M,因此系统是稳定的;假设n00,系统是非因果的,因为输出还和x(n)的将来值有关。时域离散信号和时域离散系统第 1 章(4)假设n00,系统是因果系统,因为n时刻输出只和n时刻以后的输入有关
12、。如果|x(n)|M,则|y(n)|M,因此系统是稳定的。(5)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果|x(n)|M,则|y(n)|=|ex(n)|e|x(n)|eM,因此系统是稳定的。7 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,要求画出y(n)输出的波形。解解:解法(一)采用列表法。y(n)=x(n)*h(n)=x(m)h(nm)时域离散信号和时域离散系统第 1 章题7图时域离散信号和时域离散系统第 1 章y(n)=2,1,0.5,2,1,4.5,2,1;n=2,1,0,1,2,3,4,5时域离散信号和时域离散系统第 1 章解法(二)采用解
13、析法。按照题7图写出x(n)和h(n)的表达式分别为x(n)=(n+2)+(n1)+2(n3)h(n)=2(n)+(n1)+(n2)由于x(n)*(n)=x(n)x(n)*A(nk)=Ax(nk)故时域离散信号和时域离散系统第 1 章y(n)=x(n)*h(n)=x(n)*2(n)+(n1)+(n2)=2x(n)+x(n1)+x(n2)将x(n)的表示式代入上式,得到 y(n)=2(n+2)(n+1)0.5(n)+2(n1)+(n2)+4.5(n3)+2(n4)+(n5)时域离散信号和时域离散系统第 1 章8.设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,分别求出输出
14、y(n)。(1)h(n)=R4(n),x(n)=R5(n)(2)h(n)=2R4(n),x(n)=(n)(n2)(3)h(n)=0.5nu(n),xn=R5(n)解解:(1)y(n)=x(n)*h(n)=R4(m)R5(nm)先确定求和域。由R4(m)和R5(nm)确定y(n)对于m的非零区间如下:0m34mn时域离散信号和时域离散系统第 1 章根据非零区间,将n分成四种情况求解:n7时,y(n)=0时域离散信号和时域离散系统第 1 章最后结果为 0 n7 n+1 0n3 8n4n7y(n)的波形如题8解图(一)所示。(2)y(n)=2R4(n)*(n)(n2)=2R4(n)2R4(n2)=2
15、(n)+(n1)(n+4)(n+5)y(n)的波形如题8解图(二)所示y(n)=时域离散信号和时域离散系统第 1 章题8解图(一)时域离散信号和时域离散系统第 1 章题8解图(二)时域离散信号和时域离散系统第 1 章(3)y(n)=x(n)*h(n)=R5(m)0.5nmu(nm)=0.5nR5(m)0.5mu(nm)y(n)对于m 的非零区间为 0m4,mn n0时,y(n)=0 0n4时,时域离散信号和时域离散系统第 1 章=(10.5n1)0.5n=20.5n n5时最后写成统一表达式:y(n)=(20.5n)R5(n)+310.5nu(n5)时域离散信号和时域离散系统第 1 章9 证明
16、线性卷积服从交换律、结合律和分配律,即证明下面等式成立:(1)x(n)*h(n)=h(n)*x(n)(2)x(n)*(h1(n)*h2(n)=(x(n)*h1(n)*h2(n)(3)x(n)*(h1(n)+h2(n)=x(n)*h1(n)+x(n)*h2(n)证明:(1)因为令m=nm,则时域离散信号和时域离散系统第 1 章(2)利用上面已证明的结果,得到时域离散信号和时域离散系统第 1 章交换求和号的次序,得到时域离散信号和时域离散系统第 1 章10 设系统的单位脉冲响应h(n)=(3/8)0.5nu(n),系统的输入x(n)是一些观测数据,设x(n)=x0,x1,x2,xk,,试利用递推法
17、求系统的输出y(n)。递推时设系统初始状态为零状态。时域离散信号和时域离散系统第 1 章解解:n=0时,n0n=1时,时域离散信号和时域离散系统第 1 章n=2时,最后得到11 设系统由下面差分方程描述:设系统是因果的,利用递推法求系统的单位脉冲响应。时域离散信号和时域离散系统第 1 章解解:令x(n)=(n),则n=0时,n=1时,时域离散信号和时域离散系统第 1 章n=2时,n=3时,归纳起来,结果为时域离散信号和时域离散系统第 1 章12.设系统用一阶差分方程y(n)=ay(n1)+x(n)描述,初始条件y(-1)=0,试分析该系统是否是线性非时变系统。解解:分析的方法是让系统输入分别为
18、(n)、(n1)、(n)+(n1)时,求它的输出,再检查是否满足线性叠加原理和非时变性。(1)令x(n)=(n),这时系统的输出用y1(n)表示。该情况在教材例1.4.1 中已求出,系统的输出为y1(n)=anu(n)时域离散信号和时域离散系统第 1 章(2)令x(n)=(n1),这时系统的输出用y2(n)表示。n=0时,n=1时,n=2时,任意 n 时,时域离散信号和时域离散系统第 1 章最后得到(3)令x(n)=(n)+(n1),系统的输出用y3(n)表示。n=0时,n=1时,n=2时,时域离散信号和时域离散系统第 1 章n=3时,任意 n 时,最后得到时域离散信号和时域离散系统第 1 章
19、由(1)和(2)得到y1(n)=T(n),y2(n)=T(n1)y1(n)=y2(n1)因此可断言这是一个时不变系统。情况(3)的输入信号是情况(1)和情况(2)输入信号的相加信号,因此y3(n)=T(n)+(n1)。观察y1(n)、y2(n)、y3(n),得到y3(n)=y1(n)+y2(n),因此该系统是线性系统。最后得到结论:用差分方程y(n)=ay(n1)+x(n),0a1描写的系统,当初始条件为零时,是一个线性时不变系统。时域离散信号和时域离散系统第 1 章13 有一连续信号xa(t)=cos(2ft+j),式中,f=20 Hz,j=/2。(1)求出xa(t)的周期;(2)用采样间隔
20、T=0.02 s对xa(t)进行采样,试写出采样信号 的表达式;(3)画出对应 的时域离散信号(序列)x(n)的波形,并求出x(n)的周期。解解:(1)xa(t)的周期为时域离散信号和时域离散系统第 1 章(2)(3)x(n)的数字频率=0.8,故,因而周期N=5,所以 x(n)=cos(0.8n+/2)画出其波形如题13解图所示。时域离散信号和时域离散系统第 1 章题13解图时域离散信号和时域离散系统第 1 章14.已知滑动平均滤波器的差分方程为(1)求出该滤波器的单位脉冲响应;(2)如果输入信号波形如前面例1.3.4的图1.3.1所示,试求出y(n)并画出它的波形。解:(1)将题中差分方程
21、中的x(n)用(n)代替,得到该滤波器的单位脉冲响应,即时域离散信号和时域离散系统第 1 章(2)已知输入信号,用卷积法求输出。输出信号y(n)为表1.4.1表示了用列表法解卷积的过程。计算时,表中x(k)不动,h(k)反转后变成h(k),h(nk)则随着n的加大向右滑动,每滑动一次,将h(nk)和x(k)对应相乘,再相加和平均,得到相应的y(n)。“滑动平均”清楚地表明了这种计算过程。最后得到的输出波形如前面图1.3.2所示。该图清楚地说明滑动平均滤波器可以消除信号中的快速变化,使波形变化缓慢。时域离散信号和时域离散系统第 1 章时域离散信号和时域离散系统第 1 章15*.已知系统的差分方程
22、和输入信号分别为用递推法计算系统的零状态响应。解:求解程序ex115.m如下:%程序ex115.m%调用filter解差分方程y(n)+0.5y(n1)=x(n)+2x(n2)xn=1,2,3,4,2,1,zeros(1,10);%x(n)=单位脉冲序列,长度N=31B=1,0,2;A=1,0.5;%差分方程系数时域离散信号和时域离散系统第 1 章yn=filter(B,A,xn)%调用filter解差分方程,求系统输出信号y(n)n=0:length(yn)1;subplot(3,2,1);stem(n,yn,.);axis(1,15,2,8)title(系统的零状态响应);xlabel(n
23、);ylabel(y(n)程序运行结果:时域离散信号和时域离散系统第 1 章yn=1.0000 1.5000 4.2500 5.8750 5.0625 6.4688 0.7656 1.6172 -0.8086 0.4043-0.2021 0.1011 -0.0505 0.0253 -0.0126 0.0063 -0.0032 0.0016 -0.0008 0.0004 -0.0002 0.0001 -0.0000 0.0000 -0.0000 0.0000程序运行结果的y(n)波形图如题15*解图所示。时域离散信号和时域离散系统第 1 章题15*解图时域离散信号和时域离散系统第 1 章16*.
24、已知两个系统的差分方程分别为 (1)y(n)=0.6y(n1)0.08y(n2)+x(n)(2)y(n)=0.7y(n1)0.1y(n2)+2x(n)x(n2)分别求出所描述的系统的单位脉冲响应和单位阶跃响应。解解:(1)系统差分方程的系数向量为B1=1,A1=1,0.6,0.08(2)系统差分方程的系数向量为B2=2,0,1,A2=1,0.7,0.1时域离散信号和时域离散系统第 1 章调用MATLAB函数filter计算两个系统的系统的单位脉冲响应和单位阶跃响应的程序ex116.m如下:%程序ex116.mB1=1;A1=1,0.6,0.08;%设差分方程(1)系数向量B2=2,0,1;A2
25、=1,0.7,0.1;%设差分方程(2)系数向量%=%系统1xn=1,zeros(1,30);%xn=单位脉冲序列,长度N=31xi=filtic(B1,A1,ys);%由初始条件计算等效初始条件输入序列xi时域离散信号和时域离散系统第 1 章hn1=filter(B1,A1,xn,xi);%调用filter解差分方程,求系统输出信号hn1n=0:length(hn1)-1;subplot(3,2,1);stem(n,hn1,.)title(a)系统1的系统单位脉冲响应);xlabel(n);ylabel(h(n)xn=ones(1,30);%xn=单位阶跃序列,长度N=31sn1=filte
26、r(B1,A1,xn,xi);%调用filter解差分方程,求系统输出信号sn1n=0:length(sn1)1;subplot(3,2,2);stem(n,sn1,.)时域离散信号和时域离散系统第 1 章itle(b)系统1的单位阶跃响应);xlabel(n);ylabel(s(n)%=%系统2xn=1,zeros(1,30);%xn=单位脉冲序列,长度N=31xi=filtic(B2,A2,ys);%由初始条件计算等效初始条件输入序列xihn2=filter(B2,A2,xn,xi);%调用filter解差分方程,求系统输出信号hn2n=0:length(hn2)1;subplot(3,2
27、,5);stem(n,hn2,.)时域离散信号和时域离散系统第 1 章title(a)系统2的系统单位脉冲响应);xlabel(n);ylabel(h(n)xn=ones(1,30);%xn=单位阶跃序列,长度N=31sn2=filter(B2,A2,xn,xi);%调用filter解差分方程,求系统输出信号sn2n=0:length(sn2)1;subplot(3,2,6);stem(n,sn2,.)title(b)系统2的单位阶跃响应);xlabel(n);ylabel(s(n)程序运行结果如题16*解图所示。时域离散信号和时域离散系统第 1 章题16*解图时域离散信号和时域离散系统第 1
28、 章17*.已知系统的差分方程为y(n)=a1y(n1)a2y(n2)+bx(n)其中,a1=0.8,a2=0.64,b=0.866。(1)编写求解系统单位脉冲响应h(n)(0n49)的程序,并画出h(n)(0n49);(2)编写求解系统零状态单位阶跃响应s(n)(0n100)的程序,并画出s(n)(0n100)。时域离散信号和时域离散系统第 1 章解解:调用MATLAB函数filter计算该系统的系统响应的程序ex117.m如下:%程序ex117.m%调用filter解差分方程,求系统单位脉冲响应和单位阶跃响应B=0.866;A=1,0.8,0.64;%差分方程系数向量%=%(1)求解系统单
29、位脉冲响应,并画出h(n)xn=1,zeros(1,48);%xn=单位脉冲序列,长度N=31时域离散信号和时域离散系统第 1 章hn=filter(B1,A1,xn);%调用filter解差分方程,求系统输出信号hnn=0:length(hn)1;subplot(3,2,1);stem(n,hn,.)title(a)系统的单位脉冲响应);xlabel(n);ylabel(h(n)%=%(2)求解系统单位阶跃响应,并画出h(n)xn=ones(1,100);%xn=单位阶跃序列,长度N=100时域离散信号和时域离散系统第 1 章sn=filter(B,A,xn);%调用filter解差分方程,
30、求系统单位阶跃响应snn=0:length(sn)1;subplot(3,2,2);stem(n,sn,.);axis(0,30,0,2)title(b)系统的单位阶跃响应);xlabel(n);ylabel(s(n)%=程序运行结果如题17*解图所示。时域离散信号和时域离散系统第 1 章题17*解图时域离散信号和时域离散系统第 1 章18*.在题18*图中,有四个分系统T1、T2、T3和T4,四个分系统分别用下面的单位脉冲响应或者差分方程描述:时域离散信号和时域离散系统第 1 章题18*图编写程序计算整个系统的单位脉冲响应h(n),0n99。时域离散信号和时域离散系统第 1 章解解:由题18
31、*图可知,可以采用以下步骤计算整个系统的单位脉冲响应h(n)。设x(n)=(n),则v(n)=h1(n)*h2(n)+h3(n)该式调用conv函数计算。h(n)=T4v(n)该式调用filter函数计算。调用MATLAB函数conv和filter计算该系统的系统响应的程序ex118.m如下:时域离散信号和时域离散系统第 1 章%程序ex118.m%调用conv和filter求总系统单位脉冲响应序列h1n=1,1/2,1/4,1/8,1/16,1/32;%对h1n赋值 h2n=ones(1,6);h3n=1/4,1/2,1/4,zeros(1,97);%计算v(n)=h1(n)*h2(n)+h3(n)h12n=conv(h1n,h2n);h12n=h12n,zeros(1,89);vn=h12n+h3n;时域离散信号和时域离散系统第 1 章%调用filer计算hn等于T4对vn响应B4=1,1;A4=1,-0.9,0.81;hn=filter(B4,A4,vn);%以下为绘图部分n=0:length(hn)-1;subplot(2,1,1);stem(n,hn,.)xlabel(n);ylabel(h(n)程序运行结果如题18*解图所示。时域离散信号和时域离散系统第 1 章题18*解图