《2017年广东省广州市番禺区高考数学一模试卷(文科)Word版含解析7380.pdf》由会员分享,可在线阅读,更多相关《2017年广东省广州市番禺区高考数学一模试卷(文科)Word版含解析7380.pdf(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 2017 年广东省广州市番禺区高考数学一模试卷(文科)一、选择题(共 12 小题,每小题 5 分,满分 60 分)1设集合 S=x|x5 或 x5,T=x|7x3,则 ST=()A x|7x5 B x|3x5 C x|5x3 Dx|7x5 2在区间 1,m 上随机选取一个数 x,若 x1 的概率为,则实数 m 的值为()A2 B3 C4 D5 3设 f(x)=,则 f(f(2)的值为()A0 B1 C2 D3 4已知双曲线=1 的左、右焦点
2、分别为 F1、F2,且 F2为抛物线 y2=2px的焦点,设 P 为两曲线的一个公共点,则PF1F2的面积为()A18 B18 C36 D36 5若实数 x、y 满足,则 z=2xy 的最大值为()A B C1 D2 6已知命题 p:xR,x22xsin+10;命题 q:,R,sin(+)sin+sin,则下列命题中的真命题为()A(p)q B(pq)C(p)q Dp(q)7若函数f(x)为区间 D 上的凸函数,则对于 D 上的任意 n 个值 x1、x2、xn,总有 f(x1)+f(x2)+f(xn)nf(),现已知函数 f(x)=sinx 在 0,上是凸函数,则在锐角ABC 中,sinA+s
3、inB+sinC 的最大值为()A B C D 7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 8三棱柱 ABCA1B1C1的侧棱垂直于底面,且 ABBC,AB=BC=AA1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为()A48 B32 C12 D8 9执行如图所示的程序框图,若 x a,b,y 0,4,则 ba 的最小值为()A2 B3 C4 D5 10已知向量、满足=+,|=2,|=1,E、F 分别是线段BC、CD 的中点,若=,则向量与的夹角为()A B C D 11
4、一块边长为 6cm 的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正三棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3),则该容器的体积为()A B C D 12 已知椭圆 E:+=1 的一个顶点为 C(0,2),直线 l 与椭圆 E 交于 A、B 两点,若 E 的左焦点为ABC 的重心,则直线 l 的方程为()7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 A6x5y14=0 B6x5y+14=0 C6x+5y+14=0
5、 D6x+5y14=0 二、填空题(共 4 小题,每小题 5 分,满分 20 分)13若复数 a+i 是纯虚数,则实数a=14曲线 y=sinx+1 在点(0,1)处的切线方程为 15已知 f(x)是定义在 R 上的奇函数,f(x)满足 f(x+2)=f(x),当 0 x1 时,f(x)=x,则 f(37.5)等于 16函数 f(x)=sinx+cosx+1(0)的最小正周期为,当 x m,n时,f(x)至少有 5 个零点,则 nm 的最小值为 三、解答题(共 6 小题,满分 70 分)17在ABC 中,内角 A、B、C 所对的边分别是 a、b、c,已知 A=60,b=5,c=4(1)求 a;
6、(2)求 sinBsinC 的值 18设等差数列 an 的公差为 d,且 2a1=d,2an=a2n1(1)求数列 an 的通项公式;(2)设 bn=,求数列 bn 的前 n 项和 Sn 19某市为了解各校(同学)课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为 A、B、C、D 四个等级,随机调阅了甲、乙两所学校各 60 名学生的成绩,得到如图所示分布图:()试确定图中实数 a 与 b 的值;()若将等级 A、B、C、D 依次按照 90 分、80 分、60 分、50 分转换成分数,试分别估计两校学生国学成绩的均值;7C 教育资源网(http:/),
7、百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217()从两校获得 A 等级的同学中按比例抽取 5 人参加集训,集训后由于成绩相当,决定从中随机选 2 人代表本市参加省级比赛,求两人来自同一学校的概率 20如图,三棱锥 PABC 中,PA=PC,底面 ABC 为正三角形()证明:ACPB;()若平面 PAC平面 ABC,AB=2,PAPC,求三棱锥 PABC 的体积 21已知圆 C:(x6)2+y2=20,直线 l:y=kx 与圆 C 交于不同的两点 A、B()求实数 k 的取值范围;()若=2,求直线 l 的方程 22已知函
8、数 f(x)=alnx+x2x,其中 aR()若 a0,讨论 f(x)的单调性;()当 x1 时,f(x)0 恒成立,求 a 的取值范围 7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 2017 年广东省广州市番禺区高考数学一模试卷(文科)参考答案与试题解析 一、选择题(共 12 小题,每小题 5 分,满分 60 分)1设集合 S=x|x5 或 x5,T=x|7x3,则 ST=()A x|7x5 B x|3x5 C x|5x3 Dx|7x5【考点】交集及其运算【分析】利用交集定义和不等式
9、性质求解【解答】解:集合 S=x|x5 或 x5,T=x|7x3,ST=x|7x5 故选:A 2在区间 1,m 上随机选取一个数 x,若 x1 的概率为,则实数 m 的值为()A2 B3 C4 D5【考点】几何概型【分析】利用几何概型的公式,利用区间长度的比值得到关于m 的等式解之【解答】解:由题意 x1 的概率为,则,解得 m=4;故选 C 3设 f(x)=,则 f(f(2)的值为()A0 B1 C2 D3【考点】分段函数的解析式求法及其图象的作法【分析】考查对分段函数的理解程度,f(2)=log3(221)=1,所以 f(f(2)=f(1)=2e11=2 7C 教育资源网(http:/),
10、百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217【解答】解:f(f(2)=f(log3(221)=f(1)=2e11=2,故选 C 4已知双曲线=1 的左、右焦点分别为 F1、F2,且 F2为抛物线 y2=2px的焦点,设 P 为两曲线的一个公共点,则PF1F2的面积为()A18 B18 C36 D36【考点】双曲线的简单性质【分析】求出 P 的坐标,即可求出PF1F2的面积【解答】解:由题意,=6,p=12,双曲线方程与抛物线方程联立,可得 P(9,6),PF1F2的面积为=36,故选 D 5若实数 x、y 满足,则 z
11、=2xy 的最大值为()A B C1 D2【考点】简单线性规划【分析】作出可行域,变形目标函数,平移直线 y=2x 可得结论【解答】解:作出约束条件,所对应的可行域(如图ABO),变形目标函数可得 y=2xz,平移直线 y=2x 可知当直线经过点 A 时,直线的截距最小,z 取最大值,由可得,A(,)代值计算可得 z=2xy 的最大值为 1,故选:C 7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 6已知命题 p:xR,x22xsin+10;命题 q:,R,sin(+)sin+sin,则
12、下列命题中的真命题为()A(p)q B(pq)C(p)q Dp(q)【考点】复合命题的真假【分析】分别判断出p,q 的真假,从而判断出复合命题的真假即可【解答】解:关于命题 p:xR,x22xsin+10,=4sin240,故 p 是真命题,关于命题 q:,R,sin(+)sin+sin,是真命题,(p)q 是真命题,故选:C 7若函数 f(x)为区间 D 上的凸函数,则对于 D 上的任意 n 个值 x1、x2、xn,总有 f(x1)+f(x2)+f(xn)nf(),现已知函数 f(x)=sinx 在 0,上是凸函数,则在锐角ABC 中,sinA+sinB+sinC 的最大值为()A B C
13、D【考点】三角函数的化简求值【分析】利用凸函数对于 D 上的任意 n 个值 x1、x2、xn,总有 f(x1)+f(x2)+f(xn)nf(),将函数 f(x)=sinx 在 0,7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 sinA+sinB+sinC,得到所求【解答】解:由已知凸函数的性质得到sinA+sinB+sinC=3sin=;所以在锐角ABC 中,sinA+sinB+sinC 的最大值为;故选 D 8三棱柱 ABCA1B1C1的侧棱垂直于底面,且 ABBC,AB=BC=AA
14、1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为()A48 B32 C12 D8【考点】球的体积和表面积【分析】以 AB,BC,AA1为棱构造一个正方体,则该三棱柱的所有顶点都在该正方体的外接球上,由此能求出该球的表面积【解答】解:三棱柱 ABCA1B1C1的侧棱垂直于底面,且 ABBC,AB=BC=AA1=2,以 AB,BC,AA1为棱构造一个正方体,则该三棱柱的所有顶点都在该正方体的外接球上,该球的半径 R=,该球的表面积为 S=4R2=43=12 故选:C 9执行如图所示的程序框图,若 x a,b,y 0,4,则 ba 的最小值为7C 教育资源网(http:/),百万资源免费
15、下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217()A2 B3 C4 D5【考点】程序框图【分析】写出分段函数,利用x a,b,y 0,4,即可 ba 的最小值【解答】解:由题意,y=,x a,b,y 0,4,则 ba 的最小值为 2,此时区间为 0,2 或 2,4,故选 A 10已知向量、满足=+,|=2,|=1,E、F 分别是线段BC、CD 的中点,若=,则向量与的夹角为()A B C D【考点】平面向量数量积的运算【分析】由题意画出图形,结合求得,的值,即可求出向量与的夹角【解答】解:如图所示,=()()=;由|=|=2,|=|
16、=1,可得=1,cos,=,7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217,=,即向量与的夹角为 故选:B 11一块边长为 6cm 的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正三棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3),则该容器的体积为()A B C D【考点】棱柱、棱锥、棱台的体积【分析】推导出 PM+PN=6,且 PM=PN,MN=3,PM=3,设 MN 中点为 O,则 PO平面 ABCD,由此能求出该容
17、器的体积【解答】解:如图(2),PMN 是该四棱锥的正视图,由图(1)知:PM+PN=6,且 PM=PN,由PMN 为等腰直角三角形,知 MN=3,PM=3,设 MN 中点为 O,则 PO平面 ABCD,PO=,该容器的体积为=9 故选:D 7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 12 已知椭圆 E:+=1 的一个顶点为 C(0,2),直线 l 与椭圆 E 交于 A、B 两点,若 E 的左焦点为ABC 的重心,则直线 l 的方程为()A6x5y14=0 B6x5y+14=0 C6
18、x+5y+14=0 D6x+5y14=0【考点】椭圆的简单性质【分析】先由椭圆左焦点 F1恰为ABC 的重心,得相交弦 AB 的中点坐标,再由点 A、B 在椭圆上,利用点差法,将中点坐标代入即可的直线 l 的斜率,最后由直线方程的点斜式写出直线方程即可【解答】解:设 A(x1,y1),B(x2,y2),椭圆+=1 的左焦点为(1,0),点 C(0,2),且椭圆左焦点 F1恰为ABC 的重心=1,=0 x1+x2=3,y1+y2=2 ,两式相减得:+=0 将代入得:=,即直线 l 的斜率为 k=,直线 l 过 AB 中点(,1)直线 l 的方程为 y1=(x+)故答案为 6x5y+14=0,7C
19、 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 故选 B 二、填空题(共 4 小题,每小题 5 分,满分 20 分)13若复数 a+i 是纯虚数,则实数a=0 【考点】复数代数形式的乘除运算【分析】利用纯虚数的定义即可得出【解答】解:复数 a+i 是纯虚数,则实数 a=0 故答案为:0 14曲线 y=sinx+1 在点(0,1)处的切线方程为 xy+1=0 【考点】利用导数研究曲线上某点切线方程【分析】先对函数 y=sinx+1 进行求导,再根据导数的几何意义求出曲线 y=sinx+1在点
20、x=0 处的切线斜率,由点斜式方程进而可得到切线方程【解答】解:y=cosx,切线的斜率 k=y|x=0=1,切线方程为 y1=x0,即 xy+1=0 故答案为:xy+1=0 15已知 f(x)是定义在 R 上的奇函数,f(x)满足 f(x+2)=f(x),当 0 x1 时,f(x)=x,则 f(37.5)等于 0.5 【考点】抽象函数及其应用【分析】根据题意,由 f(x+2)=f(x)可得 f(x+4)=f(x+2)=f(x),即函数 f(x)的周期为 4,即有 f(37.5)=f(1.5),结合题意可得 f(1.5)=f 2+(0.5)=f(0.5),结合函数的奇偶性可得 f(0.5)=f
21、(0.5),进而结合函数在 0 x1 上的解析式可得 f(0.5)的值,综合即可得答案【解答】解:根据题意,由于 f(x+2)=f(x),则有 f(x+4)=f(x+2)=f(x),即函数 f(x)的周期为 4,则有 f(37.5)=f(1.5+49)=f(1.5),7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 又由 f(x+2)=f(x),则有 f(1.5)=f 2+(0.5)=f(0.5),又由函数为奇函数,则f(0.5)=f(0.5),又由当 0 x1 时,f(x)=x,则 f(
22、0.5)=0.5;则有 f(37.5)=f(1.5)=f(0.5)=f(0.5)=0.5,故 f(37.5)=0.5;故答案为:0.5 16函数 f(x)=sinx+cosx+1(0)的最小正周期为,当 x m,n时,f(x)至少有 5 个零点,则 nm 的最小值为 2 【考点】三角函数中的恒等变换应用;正弦函数的图象【分析】将函数化简为 f(x)=2sin(2x+)+1的最小正周期为,可得 f(x)=2sin(2x+)+1可知在 y 轴左侧的第一个零点为,右侧的第一个零点为,x m,n 时,f(x)至少有 5 个零点,可得 nm 的最小值【解答】解:函数 f(x)=sinx+cosx+1(0
23、)化简可得:f(x)=2sin(2x+)+1 最小正周期为,即 T=,可得=1 f(x)=2sin(2x+)+1 根据正弦函数的图象及性质可知:函数 f(x)的 y 轴左侧的第一个零点为,右侧的第一个零点为,x m,n 时,f(x)至少有 5 个零点,不妨设 m=,则 n=此时 nm 可得最小值为 2 故答案为 2 三、解答题(共 6 小题,满分 70 分)17在ABC 中,内角 A、B、C 所对的边分别是 a、b、c,已知 A=60,b=5,7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,7876321
24、7 c=4(1)求 a;(2)求 sinBsinC 的值【考点】余弦定理;正弦定理【分析】(1)由题意和余弦定理列出式子,即可求出 a 的值;(2)由条件和正弦定理求出 sinB 和 sinC 的值,代入式子求出答案【解答】解:(1)因为 A=60,b=5,c=4,所以由余弦定理得,a2=b2+c22bccosA=25+16=21,则 a=;(2)由正弦定理得,=,所以 sinB=,sinC=所以 sinBsinC=18设等差数列 an 的公差为 d,且 2a1=d,2an=a2n1(1)求数列 an 的通项公式;(2)设 bn=,求数列 bn 的前 n 项和 Sn【考点】数列递推式;数列的求
25、和【分析】(1)利用递推关系、等差数列的通项公式即可得出(2)利用“错位相减法”与等比数列的求和公式即可得出【解答】解:(1)等差数列 an 的公差为 d,2an=a2n1 取 n=1,则 2a1=a21=a1+d1,与 2a1=d 联立,解得 d=2,a1=1 an=1+2(n1)=2n1(2)bn=,数列 bn 的前 n 项和 Sn=+,7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217=+,=+=,Sn=2 19某市为了解各校(同学)课程的教学效果,组织全市各学校高二年级全体学生参加了
26、国学知识水平测试,测试成绩从高到低依次分为 A、B、C、D 四个等级,随机调阅了甲、乙两所学校各 60 名学生的成绩,得到如图所示分布图:()试确定图中实数 a 与 b 的值;()若将等级 A、B、C、D 依次按照 90 分、80 分、60 分、50 分转换成分数,试分别估计两校学生国学成绩的均值;()从两校获得 A 等级的同学中按比例抽取 5 人参加集训,集训后由于成绩相当,决定从中随机选 2 人代表本市参加省级比赛,求两人来自同一学校的概率【考点】列举法计算基本事件数及事件发生的概率【分析】()由甲校样本频数分布条形图能求出 a,由乙校样本频率分布条形图能求出 b()由样本数据能求出甲校的
27、平均值和乙校的平均值()由样本数据可知集训的 5 人中甲校抽 2 人,分别记作 E,F,乙校抽 3 人,分别记作 M,N,Q,从 5 人中任选 2 人,利用列举法能求出两人来自同一学校的概率【解答】解:()测试成绩从高到低依次分为 A、B、C、D 四个等级,随机调阅了甲、乙两所学校各 60 名学生的成绩,由甲校样本频数分布条形图知:7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 6+a+33+6=60,解得 a=15,由乙校样本频率分布条形图得:0.15+b+0.2+0.15=1,解得
28、b=0.5()由数据可得甲校的平均值为=67,乙校的平均值为=900.15+800.5+600.2+500.15=73()由样本数据可知集训的 5 人中甲校抽 2 人,分别记作 E,F,乙校抽 3 人,分别记作 M,N,Q,从 5 人中任选 2 人,一共有 10 个基本事件,分别为:EF,EM,EN,EQ,FMFN,FQ,MN,MQ,NQ,其中 2 人来自同一学校包含中 EF,MNMQNQ,两人来自同一学校的概率 p=20如图,三棱锥 PABC 中,PA=PC,底面 ABC 为正三角形()证明:ACPB;()若平面 PAC平面 ABC,AB=2,PAPC,求三棱锥 PABC 的体积 【考点】棱
29、柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系【分析】()取 AC 中点 O,连接 PO,BO,由等腰三角形的性质可得 POAC,BOAC,再由线面垂直的判定可得 AC平面 POB,则 ACPB;()由面面垂直的性质可得 PO平面 ABC,再由已知求出三角形 ABC 的面积,即 PO 的长度,代入棱锥体积公式求得三棱锥PABC 的体积【解答】()证明:如图,取 AC 中点 O,连接 PO,BO,PA=PC,POAC,又底面 ABC 为正三角形,BOAC,POOB=O,AC平面 POB,则 ACPB;7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义
30、:7c 学科网,联系 QQ:372986183,78763217()解:平面 PAC平面 ABC,且平面 PAC平面 ABC=AC,POAC,PO平面 ABC,又 AB=2,PAPC,可得 PO=1,且 21已知圆 C:(x6)2+y2=20,直线 l:y=kx 与圆 C 交于不同的两点 A、B()求实数 k 的取值范围;()若=2,求直线 l 的方程【考点】直线与圆的位置关系【分析】()根据题意可得圆心 C(6,0)到直线 l:y=kx 的距离小于半径,由此求得 k 的范围()把直线 l:y=kx 代入圆 C,化简后利用韦达定理,再根据=2,可得x2=2x1,从而求得 k 的值,可得直线 l
31、 的方程【解答】解:()由题意可得,圆心 C(6,0)到直线 l:y=kx 的距离小于半径,即,求得k()把直线 l:y=kx 代入圆 C:(x6)2+y2=20,化简可得(1+k2)x212x+16=0,x1+x2=,x1x2=若=2,则 x2=2x1,则 x1=,x2=,则 x1x2=,k=1,故直线 l:y=x 7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 22已知函数 f(x)=alnx+x2x,其中 aR()若 a0,讨论 f(x)的单调性;()当 x1 时,f(x)0 恒成
32、立,求 a 的取值范围【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性【分析】(I)令 f(x)=0 求出 f(x)的极值点,结合 f(x)的定义域得出 f(x)的符号变换情况,从而得出f(x)的单调性;(II)对 a 进行讨论,判断 f(x)在 1,+)上的单调性,得出 f(x)在 1,+)上的最小值 fmin(x),即可得出结论【解答】解:(I)f(x)的定义域为(0,+),f(x)=,令 f(x)=0 得 2x2x+a=0,解得 x1=,x2=,a0,x10,x20,当 0 x时,f(x)0,当 x时,f(x)0,f(x)在(0,)上单调递减,在(,+)上单调递增(II)若
33、 a=0 时,f(x)=x2x,f(x)在 1,+)上单调递增,fmin(x)=f(1)=0,符合题意 若 a0,由(I)可知 f(x)在(0,)上单调递减,在(,+)上单调递增,当1 即1a0 时,f(x)在 1,+)上单调递增,fmin(x)=f(1)=0,符合题意,当1 即 a1 时,f(x)在 1,)上单调递减,在,+)上单调递增,fmin(x)=f()f(1)=0,不符合题意 若 a0,令 f(x)=0 得 2x2x+a=0,当=18a0 即 a时,f(x)0 恒成立,f(x)在 1,+)上单调7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 递增,fmin(x)=f(1)=0,符合题意 若 0,则 2x2x+a=0 有两正实数解,x1=,x2=,f(x)在(0,)上单调递增,在(,)上单调递减,在(,+)上单调递增,1,f(x)在 1,+)上单调递增,fmin(x)=f(1)=0,符合题意,综上,a 的取值范围是 1,+)7C 教育资源网(http:/),百万资源免费下载,无须注册!7C 教育资源网()域名释义:7c 学科网,联系 QQ:372986183,78763217 2017 年 4 月 3 日