中级宏观配套练习及答案20682.pdf

上传人:得** 文档编号:84873362 上传时间:2023-04-08 格式:PDF 页数:28 大小:1.25MB
返回 下载 相关 举报
中级宏观配套练习及答案20682.pdf_第1页
第1页 / 共28页
中级宏观配套练习及答案20682.pdf_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《中级宏观配套练习及答案20682.pdf》由会员分享,可在线阅读,更多相关《中级宏观配套练习及答案20682.pdf(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-第二讲 配套习题及答案 1.假设效用函数现为:1),(lclcu 10 其他条件与实例中给出的一样,试分别求分散经济与方案经济的最优解。方案者目标函数为:代约束条件进目标函数,可以得到无约束的最大化问题:一阶条件为:求解可得:代n进生产函数可得:企业利润函数为:企业利润最大化的一阶条件为:利用这两个一阶条件可以取得均衡的价格解,为:2.假设行为人的效用函数如下:)ln()ln(lcU,其中c是行为人的消费,l是行为人每天用于闲暇的时间。行为人每天的时间除了用于闲暇,就是用于工作,但他既可以为自己工作也可以为别人工作。他为自己工作时的产出函数为5.0)(4sny,其中sn为用于自己工作的时间。

2、如果他为别人工作,每小时得到的报酬是工资,记为w当然是用消费品衡量的。试写出该行为人的最优化问题,并求解之。代约束条件进目标函数,分别对l和sn两个变量求一阶导数,并令其为零,有:求解上述联立方程,可得:-3.考虑一个具有如下代表性行为人的模型。代表性消费者的效用函数如下:其中,c是消费,l是闲暇,且0。消费者拥有一单位的时间禀赋和0k单位的资本。代表性企业生产消费品的技术由如下的生产函数来表示:其中,y是产出,A 是全要素生产率,k是资本投入,n是劳动投入,且10。记w为市场的实际工资,r为资本的租金率。a.试求解实现竞争均衡时的所有价格和数量。b.试分析全要素生产率 A 的一个变化会对消费

3、、产出、就业、实际工资以及资本租金率产生怎样的影响。解:a.第一步,分析消费者行为:代约束条件进目标函数,可转化为无约束的最大化问题。对l求一阶导数,并令其为零,可得:第二步,分析企业的行为:根据市场出清条件,可得如下方程组:求解得:第三步,全部均衡解:或者,考虑方案经济情形:代约束条件进目标函数,可转化为无约束的最大化问题:对l求一阶导数,并令其为零,可得:解得:b.0)1()1(101kAAl-说明:闲暇将随技术进步而减少,因而就业将随技术进步而增加;产出、消费和资本租金率将随技术进步而上升;实际工资不会随技术进步的变化而变化。4.考虑一个如下的含有政府的代表性行为人的经济。消费者的偏好由

4、如下的效用函数代表:这里,c是消费;l是闲暇;g是政府购置;0,。消费者拥有一单位的时间禀赋。私人消费品的生产技术如下:这里,y是产出,n是劳动投入,0z。假设政府通过向消费者征收一个总额税来为自己的购置融资。1对于一个给定的g,试求均衡时的消费、产出和就业。证明这些均衡数量是帕累托最优的。2试分析当政府购置发生变化时,这些均衡数量会受到怎样的影响。平衡预算乘数时大于 1 还是小于 1,解释之。3现在假设政府是一个仁慈的政府,它将选择一个最优的g。也就是说,政府将选择一个适宜的g去最大化代表性行为人的福利。试求解最优水平的政府购置数量。解:1在给定0,g时,消费者的最优规划问题可以表述如下:代

5、约束条件进目标函数,可以转化为无约束的极值问题:该最大化问题的一阶条件为:利用这一一阶条件,可以求得消费者的闲暇需求函数:利用闲暇的需求函数,再加上消费者的时间约束和预算约束,我们可-以进一步求得消费者的劳动供应和消费需求函数:)1(wwn,1wc 可以注意到,闲暇和消费都是都是随总额税的增加而减少的,这确保在我们假设的效用函数下,这两种商品都是正常商品。也可以注意到,闲暇和消费都随w的增加而增加,这意味着在我们的模型中,相对于收入效应而言,替代效应是占主导地位的。从企业的利润最大化问题中,我们能得到:竞争均衡的定义要求政府的预算要平衡:代这些表达式进入消费者的闲暇和消费需求函数中,可以得到如

6、下的竞争均衡数量:)1()(zgzl,)1(zgzn,1gzc 注意,当我们把消费者的时间预算代进其预算约束的时候,我们已经运用了劳动市场的出清条件,ln1。利用或者商品市场出清条件,ygc,或者生产函数,zny,并与上述均衡数量相结合,可以求得均衡产量:给定时,0g我们可以借助如下的社会方案者最优问题来求得帕累托最优的均衡数量:代约束条件进目标函数,可以转化为无约束的极值问题:该最大化问题的一阶条件为:利用该一阶条件,可以求得消费者的闲暇需求函数:利用闲暇的需求函数,再加上消费者的时间约束、生产函数和资源约-束,我们可以进一步求得如下的均衡数量:)1(zgzn,1gzy,1gzc 因为这些解

7、与上面我们已经推导出来的竞争均衡数量是一样的,因此,竞争均衡分配是帕累托最优的分配。在这一例子中,之所以两者的结果一样是因为总额税并不会产生扭曲效应。2因为在题1中我们已经求得均衡数量解,因而,我们之需要简单地让这些均衡解对g求全导数,就可以得到结论:可以注意到,平衡预算乘数是小于 1 的。因为,1,所以,11dgdy。回忆:政府预算约束g必须成立,因而,g的任何一个变化一定对应着的一个一样变化:dgd。因此,我们有平衡预算乘数这一名词。也可以注意到,挤出是不完全的:因为0,所以111dgdc。3为了确定最优水平的政府购置数量,政府在给定行为人对g变化的最优反响的根底上通过选择一个适宜的g来最

8、大化代表性行为人的福利。我们可以把在题1中求得的行为人的决策规则看成是一个g的函数:)(gcc 和)(gll。这些函数告诉我们行为人的最优选择c和l是如何随着g的变化而变化的。政府的最优化问题可以描述如下:或者,等价地:一阶条件如下:或者-ggz1 1 注意,方程1的左边代表的是政府购置的边际本钱。这些本钱是借助纯财富效应通过减少消费和闲暇的形式实现的。方程1的右边代表的是政府购置的边际收益。因此,最优的g平衡着政府购置的边际收益和边际本钱。注意到边际本钱随着g的增加而增加,而边际收益则随着g的增加而减少。求解1式可以得到最优的政府购置水平:1zg 2 5.考虑一个具有和题 3 一样的偏好和生

9、产技术的代表性行为人经济。假设现在政府通过向消费者的劳动收入征收比例税来为自己的购置进展融资。让t代表税率,因而政府的总税收收入等于)1(ltw,这里,w是实际工资。1写出政府的预算约束。2对于给定的g,试求竞争均衡中的消费、产出和就业。讨论这一均衡是否是帕累托最优均衡。3证明竞争均衡的最优数量将随着g的变化而变化。4求解实现福利最大化的政府购置g的水平。这里的答案为什么与在题 1 中征总额税时的答案不同?请解释之。解:1政府的预算约束是政府购置等于税收收入:2由于税收扭曲的存在,我们不能用社会方案者的最优问题去求-解竞争均衡。在给定0,g时,消费者的最优规划问题可描述如下:代约束条件进目标函

10、数,可以转化为无约束的极值问题:该最大化问题的一阶条件为:利用该一阶条件,可以求得消费者的闲暇需求函数:可以注意到该表达式与税后实际工资无关。在这种情形下,替代效应在数值上等于收入效应,因此正好相互抵消。代闲暇的需求函数进预算约束方程,我们可以进一步求得消费者的消费需求函数:可以注意到消费与税后收入成正比关系。因此,消费将随税率的提高而下降。从企业的最大化问题中,我们可以得到:市场出清条件是:因此,竞争均衡的数量解将由如下的表达式给出:1l,11n,1zy,gzc1 我们在第一题的1局部已经求得帕累托最优的数量解。通过比照,可以发现只有在0g时两个解才一致。只要0g,竞争均衡分配将总是次优的。

11、30dgdn,0dgdy,1dgdc 注意,在这种情况下,挤出效应是完全的:1dgdc。4政府的最优化问题能描述如下:这里,)(gc和)(gl代表了竞争均衡的数量我们已经在2中求得。代入)(gc和)(gl的表达式,可以得到政府的最优化问题:或者,更简洁地:-一阶条件如下:ggz)1(1 3 再一次,可以注意到,方程3的左边代表的是政府购置的边际本钱。方程3的右边代表的是政府购置的边际收益。求解3式可以得到最优的政府购置水平:1zg 4 比拟表达式4和第一题中的表达式2,我们可以看到在目前的情形下,政府的购置水平更小因为0。也就是说,最优水平的g在征总额税时要比在征比例税时来得大。因为,在征比例

12、税时,税收将对劳动供应和消费需求产生一个扭曲效应。而这些额外的本钱是伴随着政府的行为而产生的,因此,g自然会下降。比拟1和3式可以发现,在g给定时,在征比例税时,政府活动的边际本钱更大,而边际收益两者却是一样的。第三讲 配套习题及答案 1.在我们的讲义的实例中曾描述了一个两期模型,现在,假设在这个两期模型中的期效用函数成为:1.试推导出欧拉方程。2.试求代表性消费者的最优消费组合),(121bcc。3.试求均衡的利率r。1欧拉方程为 因为21)(ttccu,所以2121)(ttccu,因而有:-2我们有三个未知数,但相应的也有三个方程,一个是欧拉方程,另两个就是约束条件。求解得:3在均衡时,0

13、1b,因此:2.假设玛丽只生活两期。在每一期里她都可以不劳而获地得到一些消费品:第一期记为1e;第二期记为2e。她对两期消费品的偏好可由如下的效用函数来表达:)ln()ln(),(2121ccccu,其中,1c和2c分别是她在第一期和第二期的消费;是一个间于 0 和 1 之间的参数,表示的是时间偏好。当然,如果玛丽觉得第一期的禀赋,也即1e太多,她是可以把它储蓄起来,以供第二期消费的。我们把她储蓄的数量记为s。非常不幸,老鼠会偷吃她储蓄的物品,因此,假设她在第一期储蓄s单位的物品,在第二期她只能得到s)1(单位,其中,是一个间于 0 和 1 之间的参数。.试写出玛丽的最优化问题。你应该描述出她

14、的选择变量、目标函数和约束条件。b.试求解最优化问题的解。当然,你应给把诸如1e、2e、等参数看作外生给定的。c.假设玛丽现在发现了一种可以减少老鼠偷吃的方法,这会对她的最优选择产生怎样的影响?无非是对的变化作一个比拟静态分析!a.)ln()ln(max21,21ccscc b.构建拉格朗日函数:-一阶条件为:利用三个一阶条件可求得欧拉方程:结合约束方程,可求得:c.分别对求导数,可得:因为玛丽学会了防止老鼠偷吃的技术,因此,将下降。根据偏导数的符号,我们可以判断:第一期的消费将减少,而第二期的消费和第一期的储蓄都将增加。3.在讲义中,我们假设行为人在初始时拥有外生给定的资本0k,并且这些资本

15、是不能直接用于消费的。现在如果我们取消资本不能直接用于消费这一强制性规定这样,第一期的收入就不需要自己去生产了。效用函数与生产函数的具体形式仍与讲义中的一样,试求每一期的均衡数量解和价格解。解:考虑方案经济的情形 如果)ln()(ttccu,zkkzfy)(,可解得:企业利润函数为:假设,1企业利润最大化的一阶条件为:利用这一条件,可求得:2.考虑如下这样一个两期问题:行为人在第一期和第二期分别得到外生收入1Y和2Y,行为人需要选择一个最优的消费组合),(21CC来实现自己的效用最大化。我们假设期效用函数是一阶导数大于零二阶导数小于零的,并记利率为r。a.以现值的形式写出行为人的跨期预算约束条

16、件。-b.现在假设政府以 t 的税率对利息收入征税。当然,我们也假定,如果你是债务人,当你在向债权人支付利息时,政府也会安一样的比率对你的利息支出进展补偿。现在写出新情形的现值跨期预算约束条件。c.假设在最优的情况下,行为人是一个储蓄者而不是一个借贷者,也即11CY。请计算政府在每一期的税收收入。d.现在假设政府取消了对利息征税,转而决定对每一期都征收一个固定数量的总额税,分别记为1T和2T:.写出行为人新的预算约束条件。.为了维持政府税收收入的现值不变,新的总额税应该满足怎样的条件?.假设新总额税满足了中的条件,行为人在新的情况形下还能承当原先的消费组合吗?.假设新总额税满足了中的条件,行为

17、人在第一期的消费是上升的、下降的、还是不变的?1.a.行为人的预算约束为:b.行为人新的预算约束为:c.政府两期的总税收收入为:d.行为人新的预算约束为:.政府在征总额税以后,其税收的现值收入为:要保证政府税收的现值收入不变,要求下式成立,即:.假设中所给出的条件成立,意味着在两种税收体制下,行-为人的收入现值是一样的,因此,老的消费组合),(21CC在新的税收制度下一定是消费的起得。.假设中所给出的条件成立,行为人第一期得消费将减少,因为,在新的税收制度下,第二期的价格为r11,要比在老的税收制度下的价格rt)1(11更低,因此,行为人会减少第一期的消费而增加第二期的消费。3.考虑一个仅生活

18、两期的代表性行为人。在第一期行为人参加工作并可获得 w 的工资收入,在第二期行为人退休并以自己在第一期的储蓄为生。行为人一生的效用为)(11)(21cucu,其中期效用函数是递增且严格凹的,21,cc分别表示行为人在第一期和第二期的消费数量。假定行为人在第一期的储蓄记为 s可以获得的报酬率,也即利率为r。1写出行为人的最优化问题目标函数和约束条件 2推导出行为人实现效用最大化时的一阶条件,并用储蓄 s 表达出来。3根据题2的结果,推导出ws /的表达式。从中你可以判断出工资收入变动会对储蓄产生怎样的影响?对你的结论给出一个简单的经济解释。4根据题2的结果,推导出rs /的表达式。从中你可以判断

19、出利率变动会对储蓄产生怎样的影响?请试着推导该偏导数的符号与跨期替代弹性我们定义为)()()(cuccuc 之间的关系。-2.1 )(11)(max21,21cucucc 2代约束条件进目标函数,消掉变量1c和2c,对另一变量s求一阶导数并令其为零,可得:或者(3)2 式中的一阶条件实际上以隐函数的形式给出了变量的rws、之间的关系,我们把这个隐函数记为:利用隐函数求导定理,有 由偏导数的值域可知,当工资收入上升时,行为人的储蓄也会随之增加。4利用隐含数求导法则,可以得到:)()1()()1()()(122222cucurcuccu )()1()()1()(11)(12222cucurccu

20、该符号不确定,依赖于跨期替代弹性的大小。当1时,0/rs;当1时,0/rs;当1时,0/rs。第五讲 配套习题及答案 1.考虑一个有如下效用函数的生活无限期的行为人:假定该行为人不拥有任何初始资产01A。该行为人可以进入一个资本市场,在这里,他她可以以固定的利率r借入或借出收入。假设行为人在每一期的收入固定等于0y。1写出行为人的最优化问题。确信包含了转换条件。2试用拉格朗日和动态规划两种方法推导出行为人的欧拉方程。3用行为人的欧拉方程和跨期预算约束条件求出她的最优消费路径。-4比拟行为人的最优消费路径和收入路径,并解释他们的差异。解:1行为人的最优化问题可描述如下:2用拉格朗日方法推导跨期欧

21、拉方程,我们首先需要求出如下最大化问题的一阶条件:这里,0t是时期 t 预算约束的拉格朗日乘子。对于所有的,2,1t,关于tttAc,1的一阶条件分别如下:利用前两个一阶条件,可以得到跨期欧拉方程:用动态规划的方法求解,我们首先需要用递规的形式构建出行为人的最优化问题:或 对应于该值函数右边最大化问题的一阶条件为:贝尔曼方程两边同时对tA求导并应用包洛定理,有:利用上式替代掉一阶条件中的)(1tAv,可以得到跨期欧拉方程:3以如下的方式表述欧拉方程:我们可以看到,给定1c,这最优的消费路径由如下形式给出:或者,更简洁地表示为:现在,我们需要从跨期预算约束中决定出1c。应用转换条件、初始资本01

22、A这些条件,跨期预算约束可以写为:然后,运用几何级数求和公式,有:替代掉tc,我们可以求解出1c:因此,最优的消费路径将由下式给出:-(4)注意。假设1)1(r,则,对于所有的,2,1t,有yct。在这一特殊的情形中,消费路径等于收入路径为常数y。假设1)1(r,则,最优的消费路径是单调增加的。假设1)1(r,则,最优消费路径是单调减少的。第六讲 配套习题及答案 1.我们知道,在连续时间下,一个变量的增长率可以表示为该变量的自然对数对时间的导数,也即dttzdtztz)(ln)()(。请利用这一事实证明如下结论:(a).两个变量乘积的增长率等于它们各自增长率之和。也即,如果)()()(tytx

23、tz,则,)()()()()()(tytytxtxtztz。(b).两个变量比率的增长率等于它们各自增长率之差。也即,如果)()()(tytxtz,则,)()()()()()(tytytxtxtztz。(c).如果)()(txtz,则,)()()()(txtxtztz。2.考虑一处于平衡增长路径上的索洛经济,为了简单,假定无技术进步。现在假定人口增长率下降。(a).处于平衡增长路径上的每工人平均资本、每工人平均产量和每工人平均消费将发生什么变化?画出经济向其新平衡增长路径移动的过程中这些变量的路径。(b).说明人口增长率下降对产量路径的影响。3.假定生产函数为柯布道格拉斯函数。-(a).将k、

24、y和c表示为模型的参数 s、n、g、和的函数。(b).k 的黄金值是多少?(c).为得到黄金资本存量,所需要的储蓄率是多少?4.考虑不变替代弹性CES生产函数,/)1(/)1()(/)1(ALKY,其中,0且1。(a).证明:该生产函数为规模报酬不变的。(b).求出该生产函数的密集形式。(c).在什么条件下该密集形式满足0)(,0)(ff?(d).在什么条件下该密集形式满足稻田条件?5.假定对资本和劳动均按其边际产品支付报酬。用w表示NANKF/),(,r表示KANKF/),(。(a).试证明劳动的边际产出w为)()(kf kkfA。(b).试证明如果劳动和资本均按其边际产出取得报酬,规模报酬

25、不变意味着:生产要素总收入等于总产量。也就是证明在规模报酬不变的情形下,),(ANKFrKwN。(c).如果生产函数的具体形式为一柯布-道格拉斯型生产函数,也即1)(),(ANKANKF,试证明这里就是资本这种生产要素所获得的收入在总收入也即总产出中所占的份额。(d).卡尔多1961 年曾列出了一些关于经济增长的典型特征,其中的两个是:(1)资本的报酬率r近似不变;2产量中分配向资本和劳动收入比例也大致不变。处于平衡增长路径上的索洛经济是否表现出这些性质?在平衡增长路径上,w和r的增长率各是多少?-(e).假定经济开场时,kk。随着k移向k,w的增长率是高于、低于还是等于其在平衡增长路径上的增

26、长率?对r来说,结果又是什么?6.设生产函数为1)(RALKY,其中R为土地数量。假设,0,0且1。生产要素按照nLLgAAKsYK、和0R变动。(a).该经济是否有唯一且稳定的平衡增长路径?也就是说,该经济是否收敛于这样一种情形:在此情形下,RALKY和、均以不变但不必一样速率增长?如果这样,其增长率各为多少?假设非如此,为什么?(b).根据你的答案,土地存量不变这一事实是否意味着持久增长是不可能的?请直观地解释。第七讲 配套习题及答案 1.考虑一个如下的新古典增长模型,其中,代表性的家庭的偏好由如下的效用函数给出:这里,10,tc是人均消费,01且。人口以固定速率n增长,因此:这里,00N

27、。生产技术由下述函数所代表:这里,10,tY是总产出,tK是总资本存量。资本使用一期就完全折旧,初始资本存量是正的:00K。政府通过向家庭征收总额税的方式来为自己的购置融资,其数量为tgN,其中,0g。出于简单化,我们假设政府把它所购置的商品均扔入大海里。-(1).以动态规划的形式构建社会方案者的最优化问题。这一规划能被用作去求竞争均衡解吗?为什么可以或不可以?(2).求解均衡路径上的资本劳动比率、人均消费和储蓄率。(3).在第(2)局部的解是否依赖g?解释原因。解:1社会方案者的问题可以写为:预算约束方程两边同时除以tN,可以构建如下的贝尔曼方程:这里,tttNKk。因为不存在税收扭曲、外部

28、性,或者市场失灵,社会方案者的最优问题可以用作去求竞争均衡的最优解。注意,社会方案者把政府支出看作是外生的变量,也即,在上述的方案最优问题中,g是作为一个参数而加以考虑的。2代预算约束条件进目标函数,我们可以重写题1中的动态规划问题为如下形式:求解右边的贝尔曼方程,一阶条件由下式给定:包洛定理意味着如下的等式成立:联合包洛定理和一阶条件可以得到欧拉方程:代平衡增长条件,kkkccctttt11,进欧拉方程,可以求得:代平衡增长条件和k的表达式进预算约束条件,可以得到:储蓄率由下式给出:因此,3让每个平衡增长的表达式对g求导数,有:也就是说,储蓄和资本积累是不受政府支出变化的影响的。产出也不-受

29、影响,稳定状态的消费将被政府购置的增加而一对一地挤出。2.考虑一个由许多一样行为人组成的经济。每个行为人的偏好由如下的效用函数给出:这里,10,tc是时期t的消费。每个行为人在每一期都拥有一单位的时间禀赋,并且都有一样的初始资本存量0k。在时期t,消费者以实际工资率tw的价格出售tn单位的时间给代表性的企业作为企业的劳动投入;同时,以实际租金率tr的价格租tk单位的资本给企业。企业的利润归消费者所有,并且消费者能以一对一的方式把当前的产出转化为下一期的资本。每期资本都完全被折旧。因此,消费者在时期t的预算约束就为:代表性企业的生产函数如下:这里,tK代表经济中所有行为人的平均资本持有量。注意,

30、各参数受如下的限制:1,10,0,0A。(1).解释在本模型中生产技术背后的经济直觉。(2).设计一个中央方案问题,使得劳动努力、消费和资本积累的路径与竞争均衡的路径一样。以递归的形式写出这一问题,并标明时期t的状态变量和选择变量。提示:强制方案者把tK看作参数。(3).假设值函数是可微的,推导相应的一阶条件、包洛定理和欧拉方程。(4).描述出资本和消费的竞争均衡增长路径。(5).竞争均衡的增长率会比最优增长率更快还是更慢?解释之。解:-1由于tK的存在,使得此题中的生产函数与通常得新古典生产函数不一样。这一生产函数包涵着如下两方面的含义:第一,企业资本存量的一个增加将通过干中学的机制导致知识

31、存量的一个增加;第二,企业的知识是一个公共产品,可以瞬时地溢出到整个经济中。2给定0tK,以动态规划的形式,中央方案问题可以表述如下:注意,这一问题在概念上与社会方案问题是不同的。这里,方案者通过把总资本存量看作参数而被迫承受外部性的存在。对于这一类型问题的解有时候也被称为限制最优。由于没有把外部性部化,这一问题与递归形式的竞争均衡相一致。时期 t 的状态变量是tk和tK;而选择变量分别是1tk和tc。资源约束条件可以在给定tw,tr和0tK的情况下,通过考虑企业的如下潜在最优问题而正式地推导出来:相应的一阶条件由下式给出:在均衡时1tn给出了竞争均衡的价格:代这些表达式以及均衡就业1tn进入

32、企业的目标函数意味着均衡利润是零:接着代均衡价格,就业和利润进消费者的预算约束可以得到经济的资源约束:3代tc进目标函数:假设值函数是可微的,相应于最优化问题右边的贝尔曼方程的一阶条件由下式给出:包洛条件可以通过对目标函数的两边对tk求全导数而得到:-包洛条件往前挪一期,并代结果进一阶条件方程,可以得到欧拉方程:4对所有的时期 t,应用总一致性条件1ttKk:或者 只要1A,消费将以固定速率1A增长。运用总一致条件到资源约束条件中,可以得到如下的等式:注意在均衡时,该经济与简单的AK 模型是一样的。两边同除以tk可得:平衡增长均衡意味着资本的增长率等于消费的增长率,因此ttkc是固定的:因此,

33、在所有的时期,平衡增长路径上的消费资本比率由下式给定:5这最优的增长率是通过求解社会方案者的如下最优化问题而被确定:注意社会方案者部化了私人间由一个企业的生产活动对其他企业所产生的外部影响。相应于这一问题的欧拉方程由下式给出:上式两边都乘以1tc,我们可以看到消费和资本的增长率由下式给出:因为10,这一增长率要比竞争均衡的增长率更大。假设投资的收益不反响由干中学和知识生产的外部社会收益,则,在竞争均衡中的资本积累是次优的。3.考虑一个经济处于平衡增长路径上的时间是连续的新古典增长模型。效用函数与生产函数均与讲义中的一样。现在假设政府在*一期,比方说0t时期宣布他她将在未来的*一期,比方说1t期

34、开场将向行为人征收投资所得税,税率为。因此,行为人的实际利率将成为-)()1()(tkftr。并且假设政府会把他她征收来的税收一次性地返还给行为人。1试画出1t时期以后的人均消费和人均资本的动态演进的相位图。2在1t时期人均消费会出现非连续的变化吗?为什么会或者不会?3试画出1t时期以前的人均消费和人均资本的动态演进的相位图。4根据你对前三个问题的答复,你认为在0t时期,人均消费必须做出怎样的调整?5请根据你的分析,画出人均消费和人均资本随时间推移的演进草图。4.请简要答复如下这些问题:a.嘉图等价定理的根本含义是什么?b.请描述一种经济环境,在那里,嘉图等价定理是成立的。在这种经济环境中,如

35、果政府公布了一项税收的减免政策,这一政策会对行为人的消费产生怎样的影响?C.嘉图等价定理成立需要具备怎样的条件?a.嘉图等价定理的根本含义是:如果政府的支出路径是给定的,则,不管政府是采用何种手段来为自己的支出融资 或者是通过征总额税的手段或者是发行债券的方式都不会对经济的资源配置产生影响。行为人并不会改变已有的行为决策。b.只要政府是征收总额税的话,在新古典增长理论中,嘉图等价定理就会成立。在代际交叠模型中,只要行为人是关心下一代的,也即他-们会为下一代留下正的遗产,则,嘉图等价定理也将成立。如果嘉图等价定理是成立的,则,政府实施的税收减免政策将会是中性的,因为行为人会增加自己的储蓄,并且所

36、增加的数量恰好等于政府减免的税收数量。因而,政府的减税政策不会对行为人的最优决策产生影响。c.嘉图等价定理要成立,以下条件是必须具备的:1政府征收的是总额税,也就是说不能有税收扭曲;2行为人是生活无限期的,他们无法把税收转移到下一代;3信贷市场是完善的,当政府突然增加税收时,他们能从信贷市场上借到相应数额的资金,从而维持自己当前的消费不变。第八讲 配套习题及答案 1.考虑如下一个代际交叠增长模型。我们用,2,1,0t来表示时间。在时期 t 期里,有tN个生活两期的消费者出生,这里,ttnNN)1(0,其中,0N外生给定,0n代表人口增长率。在 t=0 时期,有一些仅生活一期的老年行为人,他们集

37、体拥有0K单位资本并最大化在 t=0时期的消费。每个时期 t 出生的消费者的偏好由下式给定:这里,tc1和12 tc分别表示第 t 期的年轻人和第 t+1 期的老年人的消费,也就是同一个行为人在青年期和老年期的消费,0为折现因子。每个消费者在第一期拥有 1 单位的劳动禀赋,而在第二期则拥有 0 单位的劳动禀赋。生产技术由下式给出:这里,tY是产出,tK和tN是资本和劳动投入,0A,10。消费品能被一对一地转化为资本,反之亦然,即资本品也能一对一转化为消费品。当期的资本品只有到下一期才能具有生产性,我们也假设生-产中不存在折旧。在时期 t,政府发行1tB单位期限为一期的债券。每一单位债券承诺到时

38、期 t+1,将支付 11tr单位的消费品给债券的拥有者。在时期 t,政府向每个年轻消费者征t单位的是总额税。我们假设ttbNB1,这里,b 是一个固定的数,也就是说,人均政府的债务是固定的。a假设 b0,试求解实现社会最优稳定均衡时的人均资本存量k。b假设 b0,试求解实现竞争均衡时的人均资本存量k。(c)现在假设0b,试证明政府可以通过选择一个适宜的 b 来使得社会最优稳定均衡解k与竞争均衡稳定解k一样,假设定义这个适宜的b 为b,试求解最优的b值,判断b是正的还是负的,并说明理由。解:(a)在时期 t,社会方案者面临的资源约束条件如下所示:在长期中,这一模型具有人均数量趋于常数的特征。因此

39、,我们把每个 变 量 都 表 示 成 人 均 的 形 式 将 会 更 为 方 便。定 义tttNKk,)1,()(ttkFkf,我们能重写上式为:在稳定状态下,有kkt,11 cct和22 cct,其中,k,1 c和2 c都是固定不变的。在给定约束条件下,社会方案者要实现在稳定状态下每个消费者的效用最大化,实际上就相当于在求解如下一个最大化问题:代约束条件进目标函数,消掉目标函数中的2c,我们可以得到如下一个无约束的最大化问题:相应于该最大化问题的两个一阶条件分别为:-以及 利用这两个一阶条件,我们能求得实现社会最优的稳定均衡解:b出生在 t 期的消费者将求解如下的最优化问题:代把约束条件进目

40、标函数,消掉目标函数中的tc1和12 tc,就可以得到一个仅含一个决策变量ts的最优化问题。求解这个最优化问题,可以得到如下一个最优的储蓄函数:企业只需要求解如下一个静态的最优化问题:最大化这个问题的一阶条件就是通常的边际条件:资本市场的出清条件为:现在,在给定0k的情况下,上述方程决定了唯一的一个资本序列 1ttk,这一序列将收敛于一个唯一的稳定状态k,我们可以通过令kkktt 1而求解出k的具体解:c年轻行为人的最优储蓄为:)(1tttws7.44 利用方程7.24、(7.25)、(7.41)和7.44,可以证明资本演进的均衡序列 0ttk将由下式决定:nbnAkkAbnkttt1)()1

41、(1)1(117.45 稳定状态下的人均资本,)(bk,就是以下等式的解:nbnbkAbkAbnbk1)()()1(1)1()(1 (7.46)然后,根据7.43式,最优的人均债务数量为:-nnAA1)1(1 (7.47)我们可以注意到,给定,nA的值,当足够大时,有0b,当足够小时,有0b。2.考虑一个引入现收现付养老保障制度的代际交叠模型。我们假定效用函数是对数型的,也即121121lnln),(ttttccccu;也假定生产函数是柯布-道格拉斯型的,也即kkf)(。现在假设从 t 期开场,人口增长率有一个永久性地下降,也即社会遭遇了老龄化问题。在讲义中我们分析了年轻人向社会养老保障体系多

42、做的奉献td不变,因而老年人从社会养老保险制度中所获得收益tb减少的情形。现在,假设要减少老年人的收益受到了政治阻力,政府不得不通过提高年轻人的奉献td来维持老年人的收益tb不变。试分析在这种情形下,人口增长率的下降对经济造成的影响。3.请简单答复如下问题:a.什么是动态无效?b.在一个动态无效的经济中,政府实施现收现付制和基金制会对经济产生怎样不同的影响?c.请描述一个不可能出现动态无效的经济,简要解释你的理由。a.如果一个经济能通过对资源进展重新的配置来提高社会中每个人的福利,则,这个经济就是动态无效的。换句话说,在一个动态无效的经济中,它的资源配置并不是帕雷托最优的。在经济增长理论的背景

43、中,一个动态无效的经济就是一个资本积累过渡了的经济。由于资本积累过多,导致了资本的边际产出、进而是实际利率偏低了。在这-样的一个经济中,适当地减少储蓄因而减少资本存量会提高社会中每一个人的福利。b.如果一个经济是动态无效的,实际上就意味着这个经济的资本存量相对于黄金资本存量更准确说,是修正的黄金资本存量而言太高了,因而,实际利率太低了。在基金制社会保障体制中,只要政府要求的社会保障奉献率没有超过这一制度引入之前行为人的最优储蓄率,则,基金制对资本积累的影响就是中性的。因为只要行为人投入基金的资金的收益率与实际利率是相等的这一点,我们总是假定成立的,则,是进展私人的储蓄还是把资金投放进基金,对行

44、为人来说是无差异的,因此,当政府引进基金制社会保障制度以后,行为人无非就是把原先就要进展的私人储蓄转移一局部进基金中。因此,社会的总储蓄不会因为这种保障制度的引进而发生变化。这样的话,如果这个经济原先是动态无效的,则,引入基金制以后仍旧还将是动态无效的。在现收现付制度下,因为政府从年轻人身上征收来的奉献并不是用于投资的,而是直接转移给当期的老年人的,社会资本积累的惟一来源是私人储蓄,因此,现收现付制度的引入,会减少私人的储蓄进而减少社会的资本积累。因此,如果一个经济是动态无效的,在引入现收现付制以后,将会使这个经济的资本存量在长期中更靠近黄金资本存量。c.在新古典增长模型中,经济出现动态无效是不可能的。因为在新古典增长模型中,平增长路径上的资本存量只能低于黄金资本存量-而不能高于它。出现这一结果也不奇怪,因为第一福利定理告诉我们:假设市场是完全的、竞争的,并且没有外部性,则,分散经济的最优解是帕雷托最优的。我们知道,在新古典增长模型中,第一福利定理的这些条件是满足的,因此,一定不会出现动态无效的情况。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁