2021-2022学年河北省石家庄康福外国语校中考数学最后冲刺模拟试卷含解析.doc

上传人:可**** 文档编号:84708674 上传时间:2023-04-07 格式:DOC 页数:21 大小:678.54KB
返回 下载 相关 举报
2021-2022学年河北省石家庄康福外国语校中考数学最后冲刺模拟试卷含解析.doc_第1页
第1页 / 共21页
2021-2022学年河北省石家庄康福外国语校中考数学最后冲刺模拟试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2021-2022学年河北省石家庄康福外国语校中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2021-2022学年河北省石家庄康福外国语校中考数学最后冲刺模拟试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1关于x的一元二次方程x22x+m=0有两个不相等的实数根,则实数m的取值范围是()Am3Bm3Cm3Dm32碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究

2、组已研制出直径为0.5纳米的碳纳米管,1纳米0.000000001米,则0.5纳米用科学记数法表示为()A0.5109米B5108米C5109米D51010米3在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A平均数为160B中位数为158C众数为158D方差为20.34下列安全标志图中,是中心对称图形的是( )ABCD5如图是由4个相同的正方体搭成的几何体,则其俯视图是( )ABCD6如果ab=5,那么代数式(2)的值是()ABC5D57若关于x、y的方程组有实数解,则实数k的取值范围是(

3、)Ak4Bk4Ck4Dk482的绝对值是( )A2BCD9如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A7B8C9D1010某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A38B39C40D4211若代数式有意义,则实数x的取值范围是()Ax=0Bx=3Cx0Dx312如图,直线a、b被c所截,若ab,1=45,2=65,则3的度数为( )A110B115C120D130二、填空题:(本大题共6个小题,每小题4分,共24分)13有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中

4、任选3根,恰好能搭成一个三角形的概率是_14已知方程x25x+2=0的两个解分别为x1、x2,则x1+x2x1x2的值为_15若使代数式有意义,则x的取值范围是_16如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是 17如图,点A、B、C、D在O上,O点在D的内部,四边形OABC为平行四边形,则OAD+OCD= .18正多边形的一个外角是,则这个多边形的内角和的度数是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三

5、角形,这条边叫做这个三角形的“等底”(1)概念理解:如图1,在ABC中,AC6,BC3,ACB30,试判断ABC是否是”等高底”三角形,请说明理由(1)问题探究:如图1,ABC是“等高底”三角形,BC是”等底”,作ABC关于BC所在直线的对称图形得到ABC,连结AA交直线BC于点D若点B是AAC的重心,求的值(3)应用拓展:如图3,已知l1l1,l1与l1之间的距离为1“等高底”ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍将ABC绕点C按顺时针方向旋转45得到ABC,AC所在直线交l1于点D求CD的值20(6分)如图,点B、E、C、F在同一条直线上,ABDE,ACD

6、F,BECF,求证:ABDE21(6分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上()ABC的面积等于_;()若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_22(8分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”已知点C的坐标为(0,),点M是抛物线C2:(0)的顶点(1)求A、B两点的坐

7、标;(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最大?若存在,求出PBC面积的最大值;若不存在,请说明理由;(3)当BDM为直角三角形时,求的值23(8分)当=,b=2时,求代数式的值24(10分)中华文明,源远流长;中华汉字,寓意深广为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50x60100.0560x70300.1570x8040n80x90m0.3590x100500.25根据所给信息,解答下

8、列问题:(1)m= ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25(10分)解方程:1+26(12分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)

9、将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率27(12分)如图,AB为圆O的直径,点C为圆O上一点,若BAC=CAM,过点C作直线l垂直于射线AM,垂足为点D(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且CAB=30,求AD的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:根据关于x的一元二次方程

10、x2-2x+m=0有两个不相等的实数根可得=(-2)2-4m0,求出m的取值范围即可详解:关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,=(-2)2-4m0,m3,故选A点睛:本题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的根的判别式=b2-4ac当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根2、D【解析】解:0.5纳米=0.50.000 000 001米=0.000 000 000 5米=51010米故选D点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).3、D【解析

11、】解:A平均数为(158+160+154+158+170)5=160,正确,故本选项不符合题意;B按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D这组数据的方差是S2=(154160)2+2(158160)2+(160160)2+(170160)2=28.8,错误,故本选项符合题意故选D点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大4、B【解析】试题分析:A不是中心对称图形,故此选项不合题意;B是中

12、心对称图形,故此选项符合题意;C不是中心对称图形,故此选项不符合题意;D不是中心对称图形,故此选项不合题意;故选B考点:中心对称图形5、A【解析】试题分析:从上面看是一行3个正方形故选A考点:三视图6、D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(2)=a-b,当a-b=5时,原式=5,故选D.7、C【解析】利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式0来确定k的取值范围【详解】解:xyk,x+y4,根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程

13、的实数根 解不等式得 故选:C【点睛】本题考查了一元二次方程的根的判别式的应用和根与系数的关系解题的关键是了解方程组有实数根的意义8、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点2到原点的距离是2,所以2的绝对值是2,故选A9、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选C【点睛】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.10、B【解析】根据中位数的定义求解,把数据按大小排列,第3、

14、4个数的平均数为中位数【详解】解:由于共有6个数据,所以中位数为第3、4个数的平均数,即中位数为=39,故选:B【点睛】本题主要考查了中位数要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数11、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x30,解得,x3,故选D点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.12、A【解析】试题分析:首先根据三角形的外角性质得到1+2=4,然后根据平行

15、线的性质得到3=4求解解:根据三角形的外角性质,1+2=4=110,ab,3=4=110,故选A点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:【点睛】本题考查概率的计算方法,使用列举法解题时,

16、注意按一定顺序,做到不重不漏用到的知识点为:概率=所求情况数与总情况数之比14、1【解析】解:根据题意可得x1+x2=5,x1x2=2,x1+x2x1x2=52=1故答案为:1点睛:本题主要考查了根据与系数的关系,利用一元二次方程的两个根x1、x2具有这样的关系:x1+x2=,x1x2=是解题的关键15、x2【解析】直接利用分式有意义则其分母不为零,进而得出答案【详解】分式有意义,x的取值范围是:x+20,解得:x2.故答案是:x2.【点睛】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.16、10【解析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接

17、DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.四边形ABCD是正方形,B、D关于AC对称,PB=PD,PB+PE=PD+PE=DE.BE=2,AE=3BE,AE=6,AB=8,DE=10,故PB+PE的最小值是10.故答案为10.17、1【解析】试题分析:四边形OABC为平行四边形,AOC=B,OAB=OCB,OAB+B=180四边形ABCD是圆的内接四边形,D+B=180又DAOC,3D=180,解得D=1OAB=OCB=180-B=1OAD+OCD=31-(D+B+OAB+OCB)=31

18、-(1+120+1+1)=1故答案为1考点:平行四边形的性质;圆内接四边形的性质18、540【解析】根据多边形的外角和为360,因此可以求出多边形的边数为36072=5,根据多边形的内角和公式(n-2)180,可得(5-2)180=540考点:多边形的内角和与外角和三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)ABC是“等高底”三角形;(1);(3)CD的值为,1,1 【解析】(1)过A作ADBC于D,则ADC是直角三角形,ADC=90,根据30所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.(1)点B是的重心,得到设 则 根据

19、勾股定理可得即可求出它们的比值.(3)分两种情况进行讨论:当时和当时.【详解】(1)ABC是“等高底”三角形;理由:如图1,过A作ADBC于D,则ADC是直角三角形,ADC=90,ACB=30,AC=6, AD=BC=3,即ABC是“等高底”三角形;(1)如图1,ABC是“等高底”三角形,BC是“等底”, ABC关于BC所在直线的对称图形是 ,ADC=90,点B是的重心, 设 则 由勾股定理得 (3)当时,如图3,作AEBC于E,DFAC于F,“等高底”ABC的“等底”为BC,l1l1,l1与l1之间的距离为1,. BE=1,即EC=4, ABC绕点C按顺时针方向旋转45得到ABC,DCF=4

20、5,设 l1l1, 即 如图4,此时ABC等腰直角三角形,ABC绕点C按顺时针方向旋转45得到,是等腰直角三角形, 当时,如图5,此时ABC是等腰直角三角形,ABC绕点C按顺时针方向旋转45得到ABC, 如图6,作于E,则 ABC绕点C按顺时针方向旋转45,得到时,点A在直线l1上,l1,即直线与l1无交点,综上所述,CD的值为【点睛】属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.20、详见解析.【解析】试题分析:利用SSS证明ABCDEF,根据全等三角形的性质可得B=DEF,再由平行线的判定即可得ABDE试题解析:证明:

21、由BECF可得BCEF,又ABDE,ACDF,故ABCDEF(SSS),则B=DEF,ABDE考点:全等三角形的判定与性质.21、6 作出ACB的角平分线交AB于F,再过F点作FEAC于E,作FGBC于G 【解析】(1)根据三角形面积公式即可求解,(2)作出ACB的角平分线交AB于F,再过F点作FEAC于E,作FGBC于G,过G点作GDAC于D,四边形DEFG即为所求正方形【详解】解:(1)432=6,故ABC的面积等于6.(2)如图所示,作出ACB的角平分线交AB于F,再过F点作FEAC于E,作FGBC于G,四边形DEFG即为所求正方形故答案为:6,作出ACB的角平分线交AB于F,再过F点作

22、FEAC于E,作FGBC于G【点睛】本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键22、(1)A(,0)、B(3,0)(2)存在SPBC最大值为 (3)或时,BDM为直角三角形【解析】(1)在中令y=0,即可得到A、B两点的坐标(2)先用待定系数法得到抛物线C1的解析式,由SPBC = SPOC+ SBOPSBOC得到PBC面积的表达式,根据二次函数最值原理求出最大值(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90时;BDM=90时,讨论即可求得m的值【详解】解:(1)令y=0,

23、则,m0,解得:,A(,0)、B(3,0)(2)存在理由如下:设抛物线C1的表达式为(),把C(0,)代入可得,1的表达式为:,即设P(p,), SPBC = SPOC+ SBOPSBOC=0,当时,SPBC最大值为(3)由C2可知: B(3,0),D(0,),M(1,),BD2=,BM2=,DM2=MBD90, 讨论BMD=90和BDM=90两种情况:当BMD=90时,BM2+ DM2= BD2,即=,解得:,(舍去)当BDM=90时,BD2+ DM2= BM2,即=,解得:,(舍去) 综上所述,或时,BDM为直角三角形23、,63【解析】原式=,当a=,b=2时,原式24、(1)70,0.

24、2;(2)补图见解析;(3)80x90;(4)750人.【解析】分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可详解:(1)本次调查的总人数为100.05=200,则m=2000.35=70,n=40200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、1

25、01个成绩的平均数,而第100、101个数均落在80x90,这200名学生成绩的中位数会落在80x90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:30000.25=750(人)点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了中位数和利用样本估计总体25、无解【解析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x23xx23x18,解得:x3,经检验x3是增根,分式方程无解【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都

26、乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.26、(1)600(2)见解析(3)3200(4)【解析】(1)6010%=600(人)答:本次参加抽样调查的居民有600人(2分)(2)如图;(5分)(3)800040%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人(7分)(4)如图;(列表方法略,参照给分)(8分)P(C粽)=答:他第二个吃到的恰好是C粽的概率是(10分)27、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=【解析】(1)连接OC,求出OC和AD平行,求出OCCD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出BCACDA,得出比例式,代入求出即可【详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,OA=OC,OCA=CAB,CAB=CAD,OCA=CAD,OCAD,CDAD,OCCD,OC为半径,CD与圆O的位置关系是相切;(2)连接BC,AB是O的直径,BCA=90,圆O的半径为3,AB=6,CAB=30, BCA=CDA=90,CAB=CAD,CABDAC, 【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁