《第7章MATLAB解方程与函数极值(MATLAB程序设计教程电子教案)(精品).ppt》由会员分享,可在线阅读,更多相关《第7章MATLAB解方程与函数极值(MATLAB程序设计教程电子教案)(精品).ppt(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第第7章章 MATLAB解方程与函数极值解方程与函数极值7.1 线性方程组求解线性方程组求解7.2 非线性方程数值求解非线性方程数值求解7.3 常微分方程初值问题的数值解法常微分方程初值问题的数值解法7.4 函数极值函数极值7.1 线性方程组求解线性方程组求解7.1.1 直接解法直接解法1利用左除运算符的直接解法利用左除运算符的直接解法对于线性方程组对于线性方程组Ax=b,可以利用左除运算符,可以利用左除运算符“”求解:求解:x=Ab例例7-1 用直接解法求解下列线性方程组。用直接解法求解下列线性方程组。命令如下:命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1
2、,-4;b=13,-9,6,0;x=Ab2利用矩阵的分解求解线性方程组利用矩阵的分解求解线性方程组矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积。常见的矩阵分解有若干个矩阵的乘积。常见的矩阵分解有LU分解、分解、QR分解、分解、Cholesky分解,以及分解,以及Schur分解、分解、Hessenberg分解、奇异分解、奇异分解等。分解等。(1)LU分解分解矩阵的矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。线性代数中已经证明,只要一个上三角矩
3、阵的乘积形式。线性代数中已经证明,只要方阵方阵A是非奇异的,是非奇异的,LU分解总是可以进行的。分解总是可以进行的。MATLAB提供的提供的lu函数用于对矩阵进行函数用于对矩阵进行LU分解,其调用格分解,其调用格式为:式为:L,U=lu(X):产生一个上三角阵:产生一个上三角阵U和一个变换形式的下三角和一个变换形式的下三角阵阵L(行交换行交换),使之满足,使之满足X=LU。注意,这里的矩阵。注意,这里的矩阵X必须必须是方阵。是方阵。L,U,P=lu(X):产生一个上三角阵:产生一个上三角阵U和一个下三角阵和一个下三角阵L以及以及一个置换矩阵一个置换矩阵P,使之满足,使之满足PX=LU。当然矩阵
4、。当然矩阵X同样必须同样必须是方阵。是方阵。实现实现LU分解后,线性方程组分解后,线性方程组Ax=b的解的解x=U(Lb)或或x=U(LPb),这样可以大大提高运算速度。,这样可以大大提高运算速度。例例7-2 用用LU分解求解例分解求解例7-1中的线性方程组。中的线性方程组。命令如下:命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;L,U=lu(A);x=U(Lb)或采用或采用LU分解的第分解的第2种格式,命令如下:种格式,命令如下:L,U,P=lu(A);x=U(LP*b)(2)QR分解分解对矩阵对矩阵X进行进行QR分解,就是把
5、分解,就是把X分解为一个正交矩阵分解为一个正交矩阵Q和一和一个上三角矩阵个上三角矩阵R的乘积形式。的乘积形式。QR分解只能对方阵进行。分解只能对方阵进行。MATLAB的函数的函数qr可用于对矩阵进行可用于对矩阵进行QR分解,其调用格分解,其调用格式为:式为:Q,R=qr(X):产生一个一个正交矩阵:产生一个一个正交矩阵Q和一个上三角矩阵和一个上三角矩阵R,使之满足,使之满足X=QR。Q,R,E=qr(X):产生一个一个正交矩阵:产生一个一个正交矩阵Q、一个上三角矩阵、一个上三角矩阵R以及一个置换矩阵以及一个置换矩阵E,使之满足,使之满足XE=QR。实现实现QR分解后,线性方程组分解后,线性方程
6、组Ax=b的解的解x=R(Qb)或或x=E(R(Qb)。例例7-3 用用QR分解求解例分解求解例7-1中的线性方程组。中的线性方程组。命令如下:命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;Q,R=qr(A);x=R(Qb)或采用或采用QR分解的第分解的第2种格式,命令如下:种格式,命令如下:Q,R,E=qr(A);x=E*(R(Qb)(3)Cholesky分解分解如果矩阵如果矩阵X是对称正定的,则是对称正定的,则Cholesky分解将矩阵分解将矩阵X分解成一分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为个下三角矩阵和上
7、三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即则下三角矩阵为其转置,即X=RR。MATLAB函数函数chol(X)用于对矩阵用于对矩阵X进行进行Cholesky分解,其调用格式为:分解,其调用格式为:R=chol(X):产生一个上三角阵:产生一个上三角阵R,使,使RR=X。若。若X为非对称为非对称正定,则输出一个出错信息。正定,则输出一个出错信息。R,p=chol(X):这个命令格式将不输出出错信息。当:这个命令格式将不输出出错信息。当X为对为对称正定的,则称正定的,则p=0,R与上述格式得到的结果相同;否则与上述格式得到的结果相同;否则p为一个正整数。如果为一个正整数。如果X为满
8、秩矩阵,则为满秩矩阵,则R为一个阶数为为一个阶数为q=p-1的上三角阵,且满足的上三角阵,且满足RR=X(1:q,1:q)。实现实现Cholesky分解后,线性方程组分解后,线性方程组Ax=b变成变成RRx=b,所以,所以x=R(Rb)。例例7-4 用用Cholesky分解求解例分解求解例7-1中的线性方程组。中的线性方程组。命令如下:命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;R=chol(A)?Error using=cholMatrix must be positive definite命令执行时,出现错误信息,说明命令
9、执行时,出现错误信息,说明A为非正定矩阵。为非正定矩阵。7.1.2 迭代解法迭代解法迭代解法非常适合求解大型系数矩阵的方程组。在数值分析迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代解法主要包括中,迭代解法主要包括 Jacobi迭代法、迭代法、Gauss-Serdel迭代迭代法、超松弛迭代法和两步迭代法。法、超松弛迭代法和两步迭代法。1Jacobi迭代法迭代法对于线性方程组对于线性方程组Ax=b,如果,如果A为非奇异方阵,即为非奇异方阵,即aii0(i=1,2,n),则可将,则可将A分解为分解为A=D-L-U,其中,其中D为对为对角阵,其元素为角阵,其元素为A的对角元素,的对角元
10、素,L与与U为为A的下三角阵和上的下三角阵和上三角阵,于是三角阵,于是Ax=b化为:化为:x=D-1(L+U)x+D-1b与之对应的迭代公式为:与之对应的迭代公式为:x(k+1)=D-1(L+U)x(k)+D-1b这就是这就是Jacobi迭代公式。如果序列迭代公式。如果序列x(k+1)收敛于收敛于x,则,则x必必是方程是方程Ax=b的解。的解。Jacobi迭代法的迭代法的MATLAB函数文件函数文件Jacobi.m如下:如下:function y,n=jacobi(A,b,x0,eps)if nargin=3 eps=1.0e-6;elseif nargin=eps x0=y;y=B*x0+f
11、;n=n+1;end例例7-5 用用Jacobi迭代法求解下列线性方程组。设迭代初值为迭代法求解下列线性方程组。设迭代初值为0,迭代精度为,迭代精度为10-6。在命令中调用函数文件在命令中调用函数文件Jacobi.m,命令如下:,命令如下:A=10,-1,0;-1,10,-2;0,-2,10;b=9,7,6;x,n=jacobi(A,b,0,0,0,1.0e-6)2Gauss-Serdel迭代法迭代法在在Jacobi迭代过程中,计算时,已经得到,不必再用,即原迭代过程中,计算时,已经得到,不必再用,即原来的迭代公式来的迭代公式Dx(k+1)=(L+U)x(k)+b可以改进为可以改进为Dx(k+
12、1)=Lx(k+1)+Ux(k)+b,于是得到:,于是得到:x(k+1)=(D-L)-1Ux(k)+(D-L)-1b该式即为该式即为Gauss-Serdel迭代公式。和迭代公式。和Jacobi迭代相比,迭代相比,Gauss-Serdel迭代用新分量代替旧分量,精度会高些。迭代用新分量代替旧分量,精度会高些。Gauss-Serdel迭代法的迭代法的MATLAB函数文件函数文件gauseidel.m如下:如下:function y,n=gauseidel(A,b,x0,eps)if nargin=3 eps=1.0e-6;elseif nargin=eps x0=y;y=G*x0+f;n=n+1;
13、end例例7-6 用用Gauss-Serdel迭代法求解下列线性方程组。设迭代迭代法求解下列线性方程组。设迭代初值为初值为0,迭代精度为,迭代精度为10-6。在命令中调用函数文件在命令中调用函数文件gauseidel.m,命令如下:,命令如下:A=10,-1,0;-1,10,-2;0,-2,10;b=9,7,6;x,n=gauseidel(A,b,0,0,0,1.0e-6)例例7-7 分别用分别用Jacobi迭代和迭代和Gauss-Serdel迭代法求解下列线性迭代法求解下列线性方程组,看是否收敛。方程组,看是否收敛。命令如下:命令如下:a=1,2,-2;1,1,1;2,2,1;b=9;7;6
14、;x,n=jacobi(a,b,0;0;0)x,n=gauseidel(a,b,0;0;0)7.2 非线性方程数值求解非线性方程数值求解7.2.1 单变量非线性方程求解单变量非线性方程求解 在在MATLAB中提供了一个中提供了一个fzero函数,可以用来求函数,可以用来求单变量非线性方程的根。该函数的调用格式为:单变量非线性方程的根。该函数的调用格式为:z=fzero(fname,x0,tol,trace)其中其中fname是待求根的函数文件名,是待求根的函数文件名,x0为搜索的起为搜索的起点。一个函数可能有多个根,但点。一个函数可能有多个根,但fzero函数只给出函数只给出离离x0最近的那个
15、根。最近的那个根。tol控制结果的相对精度,缺控制结果的相对精度,缺省时取省时取tol=eps,trace 指定迭代信息是否在运算指定迭代信息是否在运算中显示,为中显示,为1时显示,为时显示,为0时不显示,缺省时取时不显示,缺省时取trace=0。例例7-8 求求f(x)=x-10 x+2=0在在x0=0.5附近的根。附近的根。步骤如下:步骤如下:(1)建立函数文件建立函数文件funx.m。function fx=funx(x)fx=x-10.x+2;(2)调用调用fzero函数求根。函数求根。z=fzero(funx,0.5)z=0.37587.2.2 非线性方程组的求解非线性方程组的求解
16、对于非线性方程组对于非线性方程组F(X)=0,用,用fsolve函数求其数值解。函数求其数值解。fsolve函数的调用格式为:函数的调用格式为:X=fsolve(fun,X0,option)其中其中X为返回的解,为返回的解,fun是用于定义需求解的非线性方程组的是用于定义需求解的非线性方程组的函数文件名,函数文件名,X0是求根过程的初值,是求根过程的初值,option为最优化工具为最优化工具箱的选项设定。最优化工具箱提供了箱的选项设定。最优化工具箱提供了20多个选项,用户可多个选项,用户可以使用以使用optimset命令将它们显示出来。如果想改变其中某命令将它们显示出来。如果想改变其中某个选项
17、,则可以调用个选项,则可以调用optimset()函数来完成。例如,函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中选项决定函数调用时中间结果的显示方式,其中off为不显示,为不显示,iter表示每步都显示,表示每步都显示,final只显示最终结果。只显示最终结果。optimset(Display,off)将设定将设定Display选项为选项为off。例例7-9 求下列非线性方程组在求下列非线性方程组在(0.5,0.5)附近的数值解。附近的数值解。(1)建立函数文件建立函数文件myfun.m。function q=myfun(p)x=p(1);y=p(2);q(1)=
18、x-0.6*sin(x)-0.3*cos(y);q(2)=y-0.6*cos(x)+0.3*sin(y);(2)在给定的初值在给定的初值x0=0.5,y0=0.5下,调用下,调用fsolve函数求方程函数求方程的根。的根。x=fsolve(myfun,0.5,0.5,optimset(Display,off)x=0.6354 0.3734将求得的解代回原方程,可以检验结果是否正确,命令如下:将求得的解代回原方程,可以检验结果是否正确,命令如下:q=myfun(x)q=1.0e-009*0.2375 0.2957 可见得到了较高精度的结果。可见得到了较高精度的结果。7.3 常微分方程初值问题的数
19、值解法常微分方程初值问题的数值解法7.3.1 龙格库塔法简介龙格库塔法简介7.3.2 龙格库塔法的实现龙格库塔法的实现 基于龙格库塔法,基于龙格库塔法,MATLAB提供了求常微分方程数值解提供了求常微分方程数值解的函数,一般调用格式为:的函数,一般调用格式为:t,y=ode23(fname,tspan,y0)t,y=ode45(fname,tspan,y0)其中其中fname是定义是定义f(t,y)的函数文件名,该函数文件必须返回的函数文件名,该函数文件必须返回一个列向量。一个列向量。tspan形式为形式为t0,tf,表示求解区间。表示求解区间。y0是是初始状态列向量。初始状态列向量。t和和y
20、分别给出时间向量和相应的状态向分别给出时间向量和相应的状态向量。量。例例7-10 设有初值问题,试求其数值解,并与精确解相比较设有初值问题,试求其数值解,并与精确解相比较(精确解为精确解为y(t)=)。(1)建立函数文件建立函数文件funt.m。function yp=funt(t,y)yp=(y2-t-2)/4/(t+1);(2)求解微分方程。求解微分方程。t0=0;tf=10;y0=2;t,y=ode23(funt,t0,tf,y0);%求数值解求数值解y1=sqrt(t+1)+1;%求精确解求精确解tyy1 y为数值解,为数值解,y1为精确值,显然两者近似。为精确值,显然两者近似。例例7
21、-11 求解著名的求解著名的Van der Pol方程。方程。例例7-12 有有Lorenz模型的状态方程,试绘制系统相平面图。模型的状态方程,试绘制系统相平面图。7.4 函数极值函数极值 MATLAB提供了基于单纯形算法求解函数极值的函数提供了基于单纯形算法求解函数极值的函数fmin和和fmins,它们分别用于单变量函数和多变量函数的最小它们分别用于单变量函数和多变量函数的最小值,其调用格式为:值,其调用格式为:x=fmin(fname,x1,x2)x=fmins(fname,x0)这两个函数的调用格式相似。其中这两个函数的调用格式相似。其中fmin函数用于求单变量函函数用于求单变量函数的最
22、小值点。数的最小值点。fname是被最小化的目标函数名,是被最小化的目标函数名,x1和和x2限定自变量的取值范围。限定自变量的取值范围。fmins函数用于求多变量函数的函数用于求多变量函数的最小值点,最小值点,x0是求解的初始值向量。是求解的初始值向量。MATLAB没有专门提供求函数最大值的函数,但只要注意到没有专门提供求函数最大值的函数,但只要注意到-f(x)在区间在区间(a,b)上的最小值就是上的最小值就是f(x)在在(a,b)的最大值,的最大值,所以所以fmin(f,x1,x2)返回函数返回函数f(x)在区间在区间(x1,x2)上的最大值。上的最大值。例例7-13 求求f(x)=x3-2x-5在在0,5内的最小值点。内的最小值点。(1)建立函数文件建立函数文件mymin.m。function fx=mymin(x)fx=x.3-2*x-5;(2)调用调用fmin函数求最小值点。函数求最小值点。x=fmin(mymin,0,5)x=0.8165