《信号系统_第五章离散系统的时域分析.ppt》由会员分享,可在线阅读,更多相关《信号系统_第五章离散系统的时域分析.ppt(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 5 章 离散信号与系统的时域分析 第 5 章 离散信号与系统的时域分析 5.0 引引 言言5.1 离散时间基本信号离散时间基本信号 5.2 卷积和卷积和 5.3 离散系统的算子方程离散系统的算子方程 5.4 离散系统的零输入响应离散系统的零输入响应 5.5 离散系统的零状态响应离散系统的零状态响应 5.6 系统差分方程的经典解法系统差分方程的经典解法 第 5 章 离散信号与系统的时域分析 5.1 5.1 离散时间基本信号离散时间基本信号5.1.1 5.1.1 离散时间信号离散时间信号 连续时间信号,在数学上可以表示为连续时间变量t的函数。这类信号 的特点是:在时间定义域内,除有限个不连续点
2、外,对任一给定时刻都对应有确定的信号值。离散时间信号,简称离散信号,它是离散时间变量tk(k=0,1,2,)的函数。信号仅在规定的离散时间点上有意义,而在其它时间则没有定义,如图 5.1-1(a)所 示。鉴于tk按一定顺序变化时,其相应的信号值组成一个数值序列,通常把离散时间信号定义为如下有序信号值的集合:fk=f(tk)k=0,1,2,(5.1-1)式中,k为整数,表示信号值在序列中出现的序号。第 5 章 离散信号与系统的时域分析 图 5.1 1 离散时间信号第 5 章 离散信号与系统的时域分析 式(5.1-1)中tk和tk-1之间的间隔(tk-tk-1)可以是常数,也可以随k变化。在实际应
3、用中,一般取为常数。例如,对连续时间信号均匀取样后得到的离散时间信号便是如此。对于这类离散时间信号,若令tk-tk-1=T,则信号仅在均匀时刻t=kT(k=0,1,2,)上取值。此时,式(5.1-1)中的f(tk)可以改写为f(kT),信号图形如图 5.1-1(b)所示。为了简便,我们用序列值的通项f(kT)表示集合f(kT),并将常数T省略,则式(5.1-1)可简写为fk=f(k)k=0,1,2,(5.1-2)工程应用中,常将定义在等间隔离散时刻点上的离散时间信号称为离散时间序列离散时间序列,简称序列序列。第 5 章 离散信号与系统的时域分析 5.1.2 5.1.2 离散时间基本信号离散时间
4、基本信号1.1.单位脉冲序列单位脉冲序列单位脉冲序列定义为单位脉冲序列定义为图 5.1 2 单位脉冲序列第 5 章 离散信号与系统的时域分析 位移单位脉冲序列或第 5 章 离散信号与系统的时域分析 图5.1-3 移位单位脉冲序列第 5 章 离散信号与系统的时域分析 2.2.正弦序列正弦序列正弦序列的一般形式为由于式中,m、N均为整数。式(5.1-5)表明,只有当 为整数,或者为有理数时,正弦序列才是周期序列;否则为非周期序列。(5.1-6)第 5 章 离散信号与系统的时域分析 当正弦序列是通过抽取连续时间正弦信号的样本获得时,如果假设正弦信号 的周期为T0,取样间隔为Ts,那么,经过抽样得到的
5、正弦序列可表示为式中,将它代入式(5.1-6)可 得第 5 章 离散信号与系统的时域分析 对于连续时间正弦信号 ,按几种不同间隔Ts抽样得到的正弦序列示于图 5.1-4 中。当 时,有此时,是一个周期为 16 的周期性正弦序列,其 图形如图 5.1-4(a)所示。当 ,图 5.1-4(b)所示当 ,如图5.1-4(c)所示,第 5 章 离散信号与系统的时域分析 图 5.14 正弦序列第 5 章 离散信号与系统的时域分析 (1)(1)若若A A和和 均为实数,则均为实数,则 为实指数序列。为实指数序列。当当 1 1时,时,f f(k k)随随k k单调指数增长。当单调指数增长。当0 0 1 1时
6、,时,f f(k k)随随k k单调指数衰减;单调指数衰减;当当 -1-1时时,f(kf(k)的绝对值随的绝对值随k k按指数规律增长按指数规律增长.当当 时,时,f f(k k)绝对值随绝对值随k k按指数按指数 规律衰减。规律衰减。且两者的序列值符号呈现正、且两者的序列值符号呈现正、负交替变化;负交替变化;当当 =1=1时,时,f f(k k)为常数序列。当为常数序列。当 =-1=-1时,时,f f(k k)符号也呈现符号也呈现正、正、负交替变化。负交替变化。指数序列的一般形式为:指数序列的一般形式为:3.指数序列指数序列第 5 章 离散信号与系统的时域分析 图 5.1 5 实指数序列第
7、5 章 离散信号与系统的时域分析(2)若A=1,=j0,则 是虚指数序列。我们已经知道,连续时间虚指数信号 是周期信号。然而,离散 时间虚指数序列ej0k则只有满足一定条件时才是周期的,否则是非周 期的。根据欧拉公式,式(5.1-9)可写成 可见,e j0k的实部和虚部都是正弦序列,只有其实部和虚部同时为周 期序列时,才能保证ej0k是周期的。第 5 章 离散信号与系统的时域分析(3)若A和均为复数,则f(k)=Aek为一般形式的复指数序列。设复数A=|A|ej,=+j0,并记e=r,则有 可见,复指数序列f(k)的实部和虚部均为幅值按指数规律变化的正弦序列。第 5 章 离散信号与系统的时域分
8、析 图 5.1 6 复指数序列 第 5 章 离散信号与系统的时域分析 4.Z序列序列Z序列的一般形式为 式中,z为复数。通常,称序列值为复值的序列为复序列复序列。显然,Z 序列是一复序列。若将z表示为极坐标形式 根据欧拉公式,还可写成 第 5 章 离散信号与系统的时域分析 5.2 卷卷 积积 和和5.2.1 卷积和的定义卷积和的定义 定义两个连续时间信号f1(t)和f2(t)的卷积运算为 同样地,我们定义 为序列f1(k)和f2(k)的卷积和运算,简称卷积和(Convolution Sum)。(5.2-2)第 5 章 离散信号与系统的时域分析 如果f1(k)为因果序列,由于k0时,f1(k)=
9、0,故式(5.2-2)中求和下限可 改写为零,即 如果f2(k)为因果序列,而f1(k)不受限制,那么式(5.2-2)中,当(k-i)0,即ik时,f2(k-i)=0,因而和式的上限可改写为k,也就是 如果f1(k)和f2(k)均为因果序列,则有(5.2-5)第 5 章 离散信号与系统的时域分析 考虑到f1(k)、f2(k)均为因果序列,根据式(5.2-5),可将上式表示为 例例 5.2 1 设f1(k)=e-k(k),f2(k)=(k),求f1(k)*f2(k)。解解 由卷积和定义式(5.2-2)得 第 5 章 离散信号与系统的时域分析 显然,上式中k0,故应写为 与卷积运算一样,用图解法求
10、两序列的卷积和运算也包括信号的翻转、平移、相乘、求和等四个基本步骤。第 5 章 离散信号与系统的时域分析 例例 5.2 2 已知离散信号 求卷积和f1(k)*f2(k)。第 5 章 离散信号与系统的时域分析 解解 记卷积和运算结果为f(k),由式(5.2-2)得 第一步,画出f1(i)、f2(i)图形,分别如图 5.2-1(a)、(b)所示。第二步,将f2(i)图形以纵坐标为轴线翻转 180,得到f2(-i)图形,如图 5.2-1(c)所示。第三步,将f2(-i)图形沿i轴左移(k0)或右移(k0)|k|个时间单位,得到f2(k-i)图形。例如,当k=-1和k=1时,f2(k-i)图形分别如图
11、 5.2-1(d)、(e)所示。第 5 章 离散信号与系统的时域分析 第四步第四步,对任一给定值k,按式(5.2-6)进行相乘、求和运算,得到序号为k的卷 积 和序列值f(k)。若令k由-至变化,f2(k-i)图形将从-处开始沿i轴自左向右移动,并由式(5.2-6)计算求得卷积和序列f(k)。对于本例中给定的f1(k)和f2(k),具体计算过程如下:第 5 章 离散信号与系统的时域分析 图5.2-1 卷积和计算第 5 章 离散信号与系统的时域分析 于是,其卷积和为 对于两个有限长序列的卷积和计算,可以采用下面介绍的更为简便实用的方法计算。这种 方法不需要画出序列图形,只要把两个序列排成两行,按
12、普通乘法运算进行相乘,但中 间结果不进位,最后将位于同一列的中间结果相加得到卷积和序列。例如,对于例5.2-2 中给定的f1(k)和f2(k),为了方便,将f2(k)写在第一行,f1(k)写在第二行,经序列值相乘和中间结果相加运算后得到 第 5 章 离散信号与系统的时域分析 第 5 章 离散信号与系统的时域分析 5.2.2 卷积和的性质卷积和的性质 性质性质1 离散信号的卷积和运算服从交换律、结合律和分配律,即第 5 章 离散信号与系统的时域分析 性质性质 2 任一序列f(k)与单位脉冲序列(k)的卷 积和等于序列f(k)本身,即 性质性质 3 若f1(k)*f2(k)=f(k),则 式中k1
13、,k2均为整数。第 5 章 离散信号与系统的时域分析 例例 5.2-4 已知序列f1(k)=2-(k+1)(k+1)和f2(k)=(k-2),试计算卷积和f1(k)*f2(k)。解解 用下面两种方法计算。方法一:方法一:图解法。将序列f1(k),f2(k)的自变量换为i,画出 f 1(i)和f2(i)的图形如图 5.2-2(a),(b)所示。将f2(i)图形翻转 180后,得f2(-i),如图5.2-2(c)所示。当k1时,由图 5.2-2(d)可知,其乘积项f1(i)f2(k-i)为零,故f1(k)*f2(k)=0。第 5 章 离散信号与系统的时域分析 图 5.2-2 第 5 章 离散信号与系统的时域分析 当k1时,按卷积和定义,参见图 5.2-2(e),可得 于是故有第 5 章 离散信号与系统的时域分析 方法二方法二:应用卷积和性质 3。先计算 上式中k0,故有 再应用卷积和性质 3,求得 第 5 章 离散信号与系统的时域分析 5.2.3 常用序列的卷积和公式常用序列的卷积和公式 表表 5.1 常用序列的卷积和公式常用序列的卷积和公式