正定二次型和正定矩阵精选PPT.ppt

上传人:石*** 文档编号:84325595 上传时间:2023-04-04 格式:PPT 页数:29 大小:847.50KB
返回 下载 相关 举报
正定二次型和正定矩阵精选PPT.ppt_第1页
第1页 / 共29页
正定二次型和正定矩阵精选PPT.ppt_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《正定二次型和正定矩阵精选PPT.ppt》由会员分享,可在线阅读,更多相关《正定二次型和正定矩阵精选PPT.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、关于正定二次型和正定矩阵第1页,讲稿共29张,创作于星期二22一、基本概念定义定义 设设A A为实为实n n阶对称矩阵,如果对于任意非零向阶对称矩阵,如果对于任意非零向量量X X,二次型,二次型f f=X XT TAXAX均为正数,则称二次型均为正数,则称二次型f f为正为正定的,其矩阵定的,其矩阵A A 称为正定矩阵称为正定矩阵.定义定义 如果对于任意向量如果对于任意向量X X,二次型,二次型f f=X XT TAXAX均为非均为非负负(非正非正)数,则称二次型数,则称二次型f f为半正为半正(负负)定的,其矩定的,其矩阵阵A A 称为半正称为半正(负负)定矩阵定矩阵.定义定义 如果实二次型

2、如果实二次型f f=X XT TAXAX对于某些向量对于某些向量X X为正数为正数,并且对于对于某些向量并且对于对于某些向量X X为负数为负数,则称二次型是不则称二次型是不定的定的.第2页,讲稿共29张,创作于星期二33例例第3页,讲稿共29张,创作于星期二4 4二、正定矩阵的充分必要条件定理定理 实对称矩阵A正定的充分必要条件是其特征值都是正数.证明证明 设实对称矩阵A的特征值 都是正数.存在正交矩阵Q,使得 QTAQ=,为对角矩阵,其对角线元素为 ,对于 令 即 ,显然 又 故这就证明了条件的充分性.第4页,讲稿共29张,创作于星期二5设A是正定矩阵,而 是其任意特征值,X是属于 的特征向

3、量,则有于是必要性得证.推论推论 若A是正定矩阵,则|A|0.证明证明 5第5页,讲稿共29张,创作于星期二66例例 判断下列矩阵是否为正定矩阵解解第6页,讲稿共29张,创作于星期二77第7页,讲稿共29张,创作于星期二88定理定理 实对称矩阵A正定的充分必要条件是它与单位矩阵合同.证明 充分性.设实对称矩阵A合同与E,即存在可逆矩阵C,使得 对于任意向量XO,由于C可逆,可从 解出Y O,于是故A是正定的.必要性.设实对称矩阵A是正定的.由于A是实对称的,A合同于一个对角矩阵 ,其对角线元素是A的特征值 由于A是正定的,这些特征值大于零,而这样的对角矩阵与单位矩阵合同,故A合同于单位矩阵.第

4、8页,讲稿共29张,创作于星期二9定理定理实对称矩阵A 正定的充分必要条件是存在可逆矩阵P,使得A=PTP.证明设A=PTP,P可逆.对于任意 ,由于P可逆,PXo,故设A正定,则A合同于单位矩阵,即存在可逆矩阵,使得A=PTEP=PTP.第9页,讲稿共29张,创作于星期二10例例 A正定,B实对称,则存在可逆矩阵R,使得RTAR和RTBR同时为对角形.证明证明存在P,使得PTAP=E,PTBP实对称,存在正交矩阵Q,使得 QTPTBPQ=D为对角形,令R=PQ,则为对角形.第10页,讲稿共29张,创作于星期二11例A,B正定,AB正定的充分必要条件是A,B可交换.证明必要性设AB正定,则AB

5、对称,充分性 设A,B可交换,则AB是实对称矩阵,A正定,A=CCT,AB=CCTBCTBC,CTBC是正定矩阵,特征值为正,AB特征值也为正数,故AB正定.第11页,讲稿共29张,创作于星期二1212为了叙述下一个正定矩阵充分必要条件,我们引进定义定义 给定实对称矩阵则其前s行前s列元素组成的行列式称为A的顺序主子式.即第12页,讲稿共29张,创作于星期二1313的行列式的行列式.定理定理 实对称矩阵 正定的充分必要条件是其顺序主子式全大于零.第13页,讲稿共29张,创作于星期二1414例例 用顺序主子式判断上例的矩阵的正定性.解解故A正定.第14页,讲稿共29张,创作于星期二1515实对称

6、矩阵实对称矩阵A A正定正定的充分必要条件是的充分必要条件是1.1.其特征值都是正数其特征值都是正数.2.2.A A合同于合同于3.可逆可逆.4.4.A A的顺序主子式全是正数的顺序主子式全是正数.5.A A的主子式全是正数的主子式全是正数.第15页,讲稿共29张,创作于星期二1616例例 判断下列二次型是否正定:第16页,讲稿共29张,创作于星期二17第17页,讲稿共29张,创作于星期二18例例 t在什么范围取值时二次型是正定二次型?解解第18页,讲稿共29张,创作于星期二19第19页,讲稿共29张,创作于星期二20定义定义 实对称矩阵A的第 行和第 列的元素组成的行列式称为主子式.例如是2

7、阶主子式.其中只有 是2阶顺序主子式.第20页,讲稿共29张,创作于星期二2121实对称矩阵A半正定半正定的充分必要条件是1.其特征值都是非负数.2.A合同于3.A的正惯性指数p=r.4.A的所有主子式非负.第21页,讲稿共29张,创作于星期二22定理定理 实对称矩阵实对称矩阵A A半正定的充分必要条件是所有半正定的充分必要条件是所有主子式非负主子式非负.证明 设A半正定.则A+tE正定.其所有主子式个.第22页,讲稿共29张,创作于星期二23设A的所有主子式非负.考虑矩阵 其顺序主子式 是A的 阶主子式之和,故 正定,对于任意非零向量X,令 得故A半正定.第23页,讲稿共29张,创作于星期二

8、24例例但A并非半正定,事实上,A对应的二次型主子式顺序主子式第24页,讲稿共29张,创作于星期二2525三、正定矩阵的性质1.1.若若A A为正定矩阵为正定矩阵,则则|A A|0,|0,A A可逆可逆.2.2.若若A A为正定矩阵为正定矩阵,则则A A-1-1也是正定矩阵也是正定矩阵.证明证明 A A为正定矩阵为正定矩阵,其全部特征值为正数其全部特征值为正数,A A-1-1的全部的全部特征值是它们的倒数特征值是它们的倒数,也全是正数也全是正数,故故A A-1-1正定正定.3.3.正定矩阵的对角线元素都是正数正定矩阵的对角线元素都是正数.4.4.A A为正定矩阵为正定矩阵,A Ak k也是正定

9、矩阵也是正定矩阵.5.5.A A,B B为同阶正定矩阵为同阶正定矩阵,则则A A+B B是正定矩阵是正定矩阵.6.6.若若A A为正定矩阵为正定矩阵,则存在可逆矩阵则存在可逆矩阵P P,使得使得A=PPA=PPT T.7.7.A A为正定矩阵为正定矩阵,A,A 的所有主子式大于零的所有主子式大于零.第25页,讲稿共29张,创作于星期二2626证明证明 由于A合同于单位矩阵,存在可逆矩阵Q,使得A=QTEQ=QTQ=QT(QT)T=PPT,P=QT.8.若A为n阶正定矩阵,则 正定.证明证明 对于任意m维列向量 由于矩阵P的列向量组线性无关,是P的列向量的非零线性组合,故 而A正定,故故 是正定矩阵.第26页,讲稿共29张,创作于星期二2727的若干性质1.若A为n阶可逆矩阵,则 为正定矩阵.证明 是实对称矩阵.对于任意 A可逆,否则 故 正定.2.若A为 矩阵,且 则 为m阶正定矩阵,为n阶半正定矩阵,但非正定矩阵.证明 任意 A的列向量组线性无关,第27页,讲稿共29张,创作于星期二28 的列向量组线性相关,存在n维列向量使得 ,于是故 不是正定矩阵。第28页,讲稿共29张,创作于星期二2023/4/3感谢大家观看第29页,讲稿共29张,创作于星期二

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 资格考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁