高二数学知识点及公式总结5篇.pdf

上传人:深夜****等你... 文档编号:84239711 上传时间:2023-04-04 格式:PDF 页数:9 大小:313.54KB
返回 下载 相关 举报
高二数学知识点及公式总结5篇.pdf_第1页
第1页 / 共9页
高二数学知识点及公式总结5篇.pdf_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《高二数学知识点及公式总结5篇.pdf》由会员分享,可在线阅读,更多相关《高二数学知识点及公式总结5篇.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 第 1 页 共 9 页 高二数学知识点及公式总结 5 篇 高二数学知识点及公式总结 1 1、圆的定义 平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程 (某-a)2+(y-b)2=r2 (1)标准方程,圆心(a,b),半径为 r;(2)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出 a,b,r;若利用一般方程,需要求出 D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系 直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到

2、l 的距离为,则有;(2)过圆外一点的切线:k 不存在,验证是否成立k 存在,设点斜式方程,用圆心到该直线距离=半径,求解 k,得到方程 (3)过圆上一点的切线方程:圆(某-a)2+(y-b)2=r2,圆上一点为(某 0,y0),则过此点的切线方程为(某 0-a)(某-a)+(y0-b)(y-b)=r2 练习题:2.若圆(某-a)2+(y-b)2=r2 过原点,则()A.a2-b2=0B.a2+b2=r2 C.a2+b2+r2=0D.a=0,b=0 选 B.因为圆过原点,所以(0,0)满足方程,即(0-a)2+(0-b)2=r2,所以 a2+b2=r2.第 2 页 共 9 页 高二数学知识点及

3、公式总结 2 空间中的垂直问题 (1)线线、面面、线面垂直的定义 两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理 线面垂直判定定理和性质定理 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。面面垂直的判定定理和性质定理 判定

4、定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。高二数学知识点及公式总结 3 1.1 柱、锥、台、球的结构特征 1.2 空间几何体的三视图和直观图 11 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则:长对齐、高对齐、宽相等 第 3 页 共 9 页 33 直观图:斜二测画法 44 斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于 y 轴的线长度变半,平行于某,z 轴的线长度不变;(3).画法要写好。5 用斜二测画法画出长方体的

5、步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一)空间几何体的表面积 1 棱柱、棱锥的表面积:各个面面积之和 2 圆柱的表面积 3 圆锥的表面积 4 圆台的表面积 5 球的表面积 (二)空间几何体的体积 1 柱体的体积 2 锥体的体积 3 台体的体积 4 球体的体积 高二数学必修二知识点:直线与平面的位置关系 2.1 空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的 2 倍长(如图)(2)平面通常用希腊字母、等表示

6、,如平面、平面 等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC、平面 ABCD 等。3 三个公理:第 4 页 共 9 页 (1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 AL BL=L A B 公理 1 作用:判断直线是否在平面内 (2)公理 2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C 三点不共线=有且只有一个平面,使 A、B、C。公理 2 作用:确定一个平面的依据。(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。符号表示为:P=L,且 PL 公理

7、 3 作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:共面直线 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。2 公理 4:平行于同一条直线的两条直线互相平行。符号表示为:设 a、b、c 是三条直线 ab cb 强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。第 5 页 共 9 页 公理 4 作用:判断空间两条直线平行的依据。3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点:a与 b所成的角的大小只由

8、 a、b 的相互位置来确定,与 O 的选择无关,为了简便,点 O 一般取在两直线中的一条上;两条异面直线所成的角(0,);当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作 ab;两条直线互相垂直,有共面垂直与异面垂直两种情形;计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。2.1.32.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系:(1)直线在平面内有无数个公共点 (2)直线与平面相交有且只有一个公共点 (3)直线在平面平行没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a 来表示 aa=Aa 2.2.

9、直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:a b=a ab 第 6 页 共 9 页 2.2.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示:a b ab=P a b 2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。2.2.32.2.4 直线与平面、平面与平面平行的性质 1、定理:一条直线与一个平面平行,则过这条直线的任

10、一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:a aab =b 作用:利用该定理可解决直线间的平行问题。2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。符号表示:=aab =b 作用:可以由平面与平面平行得出直线与直线平行 第 7 页 共 9 页 2.3 直线、平面垂直的判定及其性质 2.3.1 直线与平面垂直的判定 1、定义 如果直线 L 与平面 内的任意一条直线都垂直,我们就说直线 L 与平面 互相垂直,记作 L,直线 L 叫做平面 的垂线,平面 叫做直线 L 的垂面。直线与平面垂直时,它们公共点 P 叫做垂足。2、判定定理:一条直线与一个平面内的

11、两条相交直线都垂直,则该直线与此平面垂直。注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。2.3.2 平面与平面垂直的判定 1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 2、二面角的记法:二面角-l-或-AB-3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。2.3.32.3.4 直线与平面、平面与平面垂直的性质 1、定理:垂直于同一个平面的两条直线平行。2 性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。高二数学知识点及公式总结 4 考点一:向量的

12、概念、向量的基本定理 了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。考点二:向量的运算 向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法 第 8 页 共 9 页 则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能

13、运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。考点三:定比分点 掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。考点四:向量与三角函数的综合问题 向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达

14、到了高考中试题的覆盖面的要求。命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。考点五:平面向量与函数问题的交汇 平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。命题多以解答题为主,属中档题。考点六:平面向量在平面几何中的应用 向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形

15、有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运 第 9 页 共 9 页 算,从而使问题得到解决.命题多以解答题为主,属中等偏难的试题。高二数学知识点及公式总结 5 分层抽样 先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。两种方法 1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。2.分层抽样是把异

16、质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。分层标准 (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。(3)以那些有明显分层区分的变量作为分层变量。分层的比例问题 (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。高二数学知识点及公式总结 5 篇

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁