《无限循环小数如何化为分数.pdf》由会员分享,可在线阅读,更多相关《无限循环小数如何化为分数.pdf(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、.1/13 无限循环小数如何化为分数 由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几的数.转化需要先去掉无限循环小数的无限小数部分.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍使扩大后的无限循环小数与原无限循环小数的无限小数部分完全相同,然后这两个数相减,这样大尾巴就剪掉了.方法一:代数法 类型 1:纯循环小数如何化为分数 例题:如何把 0.33和 0.4747 化成分数 例 1:0.33103.33 0.33100.33=3.330.33 0.33=3 即 90.33=3 那么 0.33=3/9=1/3 例 2:0.474710047.4747 0.474
2、71000.474747.47470.4747 0.4747=47 即 990.4747=47 那么 0.4747=47/9 由此可见,纯循环小数化为分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个 9 组成的数;分子是纯循环小数中一个循环节组成的数.2/13 练习:10.3=3/10-11/3 20.31 31=31/100-131/99.30.312 312=类型 2:混循环小数如何化为分数 例题:把 0.4777和 0.325656化成分数 例3:0.477710=4.7770.4777100=47.77用即得:0.477790=474 所以:0.47
3、77=43/90 例 4:0.325656100=32.56560.32565610000=3256.56用即得:0.3256569900=3256.565632.56560.3256569900=325632 所以:0.325656=3224/9900 练习:10.366=21.25858=36.23898989=可见,无限循环小数是有理数,是有理数就可以化成分数.方法二:方程法用一元一次方程求解 .3/13 1.把 0.232323.化成分数.设 X=0.232323.因为 0.232323.=0.23+0.002323.所以 X=0.23+0.01X 解得:X=23/99 3.把 0.5
4、6787878.化成分数,因为 0.56787878.=0.56+0.01*0.787878.所以设 X=0.787878.则 X=0.78+0.01X 所以 X=78/99 所以原小数 0.56787878.=0.56+0.01X=0.56+0.078/99=2811/4950 其它无限循环小数,请仿照上述例题去作 方法三:任意一个无限循环小数都可以看成一个有限小数加上一个等比数列的极限和 比如说0.233333333.就可以看成0.2加上一个首项为0.03,公比为0.1的等比数列.那么问题就很简单了0.233333333.=0.2+0.03/=1/5+1/30=7/30.也就是说任意一个有
5、限循环小数化成分数有如下方法:首先找出选环节,如上面的例子就是 3,然后计算选环节的单位长度,如上题就是 1,如 0.232323.就是 2,0.123123123.就是 3,这里记为 q,然后写出不是循环节的部分,如上题就是 0.2,这里记为 a,再写.4/13 出第一个循环节,如上题就是 0.03,如 0.01789789789.就是0.00789,这里记为 b,分数的形式就是 a+b/1-1/,这里的a,b,q 都是有限小数,可方便化为分数.在高中学完了数列、极限以后,就会知道下面的方法:一,纯循环小数化分数:循环节的数字除以循环节的位数个 9 组成的整数.例如:0.3333=3/9=1
6、/3;0.285714285714=285714/9999992/7.二,混循环小数:例如:0.24333333不循环部分和循环节构成的的数减去不循环部分的差,再除以循环节位数个 9 添上不循环部分的位数个 0.例如:0.24333333=/900=73/300 0.9545454=/990=945/990=21/22 1 位循环 0.X X X X =X/9 2 位循环 0.XY XY XY=XY/99 3 位循环 0.XYZ XYZ =XYZ/999 N 位循环 0.a1a2a3an a1a2a3an=a1a2a3an/99999 推理依据:0.X X X X .5/13=0.X+0.0X
7、+0.00X+0.000X+=X*0.1+0.01+0.001+0.0001+=X*0.1/1-0.1 无限等比数列和 Sn=a1/首项/1-公比 =X*1/9 0.XY XY XY =0.XY+0.00XY+0.0000XY+=XY*0.01+0.0001+0.000001+=XY*0.01/1-0.01 =XY*1/99 0.XYZ XYZ XYZ =0.XYZ+0.000XYZ+0.000000XYZ+=XYZ*0.001+0.000001+0.000000001+=XYZ*0.001/1-0.001 =XYZ*1/999 0.a1a2a3an a1a2a3an =0.a1a2a3an+
8、0.0000a1a2a3an+=a1a2a3an*0.0001/=a1a2a3an*1/99999 .6/13 用幂的形式也可.0.0001 表示为 1/10n x=0.333333.10 x=3.33333.10 x-x=3 x=1/3 纯循环小数,循环节有几个数字,分母就有几个 9,分子是循环节的数字 混循环小数,循环节有几个数字,分母就有几个 9,循环节前到小数点间有几位数字,分母 9 后面就有几个 0,分子是混循环数字减去循环节前数字的差 或者用极限解,还有就是楼上的楼上的方法 我们可以将无限小数按照小数部分是否循环分成两类:即无限循环小数和无限不循环小数.无限不循环小数不能化成分数,
9、而无限循环小数是可以化成分数的.那么,无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几的数.其实,循环小数化分数难就难在无限的小数位数.所以我就从这里入手,想办法去掉无限循环小数的循环的部分.策略就是用扩大倍数的方法,把无限循环小数扩大十倍、百倍或千倍使扩大后的无限循环小数与原无限循环小数循环的部分完全相同,然后这两个数相减,这样就把循化的部分去掉了,我们的目的就达到了,.7/13 我们来看两个例子:例 1 把 0.4747和 0.33化成分数.解法 1:0.4747100=47.4747 0.47471000.4747=47.47470
10、.4747 0.4747=47 即 990.4747=47 那么 0.4747=47/99 解法 2:0.33103.33 0.33100.33=3.330.33 0.33=3 即 90.33=3 .8/13 那么 0.33=3/9=1/3 由此可见,纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个 9 组成的数;分子是纯循环小数中一个循环节组成的数.把 0.4777和 0.325656化成分数.想 1:0.477710=4.777 0.4777100=47.77 用即得:0.477790=474 所以,0.4777=43/90 想 2:0.32
11、5656100=32.5656 .9/13 0.32565610000=3256.56 用即得:0.3256569900=3256.565632.5656 0.3256569900=325632 所以,0.325656=3224/9900 由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差,分母的头几位数是 9,末几位是 0.9 的个数与循环节中的位数相同,0 的个数与不循环部分的位数相同.从上面例题可知,一个纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母的各位数都是 9,9
12、 的个数与循环节的个数相同.最后能约分再约分.把无限循环小数化为分数 给定一个无限循环小数,我们是否能把它化为分数呢?其实方法也很简单,其关键在于利用无限循环这一点.例如,给定小数0.272727.,如何把它化为分数呢?我们可以先把它写成 .10/13 1 x 0.272727.=0.272727.由于这个小数包含两个循环数字,我们把它乘以 100:100 x 0.272727.=27.2727.接着用减,利用无限循环的特点,把小数点后的数字全部去掉,得 99 x 0.272727.=27 接着把化简,得 0.272727.=3/11 当循环数字并非包括小数点后所有数字时,我们便需要多一点工夫
13、.例如要把小数 0.11345345.化为分数,可以这样做:100 x 0.11345345.=11.345345.100000 x 0.11345345.=11345.345.99900 x 0.11345345.=11334 0.11345345.=11334/99900=1889/16650 利用上述方法,我们还可以获得某些意想不到的结果.试把0.99.化为分数:.11/13 1 x 0.99.=0.99.10 x 0.99.=9.99 9 x 0.99.=9 0.99.=1 于是,我们得到 1 的无限循环小数表达式除了是 1.00.外,还可以是0.99.事实上,我们可以证明,凡是除得尽
14、的分数,除可表达为以无限个 0 结尾的循环小数外,还可表达为以无限个 9 结尾的循环小数 将纯循环小数改写成分数,分子是一个循环节的数字组成的数;分母各位数字都是 9,9 的个数与循环节中的数字的个数相同.将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是 9,末几位数字是 0,9 的个数跟循环节的数位相同,0 的个数跟不循环部分的数位相同.无限循环小数,先找其循环节即循环的那几位数字,然后将其展开为一等比数列、求出前 n 项和、取极限、化简.例如:0.333333 循环节为 3 则 0.3=3*10+3*10+310+
15、前 n 项和为:30.11-/当 n 趋向无穷时0.1n=0 .12/13 因此 0.3333=0.3/0.9=1/3 注意:mn 的意义为 m 的 n 次方.方法二:设零点三,三循环为 x,可知 10 x-x=三点三,三循环-零点三,三循环 9x=3 x=1/3 第二种:如,将 3.305030503050.3050 为循环节化为分数.解:设:这个数的小数部分为 a,这个小数表示成 3+a 10000a-a=3053 9999a=3053 a=3053/9999 算到这里后,能约分就约分,这样就能表示循环部分了.再把整数部分乘分母加进去就是 39999+3053/9999 =33050/9999 还有混循环小数转分数 如 0.1555.循环节有一位,分母写个 9,非循环节有一位,在 9 后添个 0 分子为非循环节+循环节连接-非循环节+15-1=14 14/90 .13/13 约分后为 7/45