《初中数学函数知识点总结.pdf》由会员分享,可在线阅读,更多相关《初中数学函数知识点总结.pdf(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中函数知识点总结 知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;两轴的交点 O即公共的原点叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个局部,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y 轴上的点,不属于任何象限。2、点的坐标的概念 点的坐标用a,b表示,其顺序是横坐标在前,纵坐标在后,中间有“,分开,横、纵坐标的位置不
2、能颠倒。平面内点的坐标是有序实数对,当ba 时,a,b和b,a是两个不同点的坐标。知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点 P(x,y)在第一象限0,0yx 点 P(x,y)在第二象限0,0yx 点 P(x,y)在第三象限0,0yx 点 P(x,y)在第四象限0,0yx 2、坐标轴上的点的特征 点 P(x,y)在 x 轴上0 y,x 为任意实数 点 P(x,y)在 y 轴上0 x,y 为任意实数 点 P(x,y)既在 x 轴上,又在 y 轴上x,y 同时为零,即点 P 坐标为0,0 3、两条坐标轴夹角平分线上点的坐标的特征 点 P(x,y)在第一、三象限夹角平分线上x
3、 与 y 相等 点 P(x,y)在第二、四象限夹角平分线上x 与 y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于 x 轴的直线上的各点的纵坐标相同。位于平行于 y 轴的直线上的各点的横坐标相同。5、关于 x 轴、y 轴或远点对称的点的坐标的特征 点 P 与点 p关于 x 轴对称横坐标相等,纵坐标互为相反数 点 P 与点 p关于 y 轴对称纵坐标相等,横坐标互为相反数 点 P 与点 p关于原点对称横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点 P(x,y)到坐标轴及原点的距离:1点 P(x,y)到 x 轴的距离等于y 2点 P(x,y)到 y 轴的距离等于x 3点 P
4、(x,y)到原点的距离等于22yx 知识点三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量 x 与 y,如果对于 x 的每一个值,y 都有唯一确定的值与它对应,那么就说 x 是自变量,y 是 x 的函数。2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点 1解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。2列表法 把自变量 x 的一系列值
5、和函数 y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。3图像法 用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤 1列表:列表给出自变量与函数的一些对应值 2描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 3连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。知识点四、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果bkxyk,b 是常数,k0,那么 y 叫做 x 的一次函数。特别地,当一次函数bkxy中的 b 为 0 时,kxy k 为常数,k0。这时,y叫做 x 的正比例函数。2、一次函数的图像 所有一次函数的图像都
6、是一条直线 3、一次函数、正比例函数图像的主要特征:一次函数bkxy的图像是经过点0,b的直线;正比例函数kxy 的图像是经过原点0,0的直线。k的符号 b 的符号 函数图像 图像特征 k0 b0 y 0 x 图像经过一、二、三象限,y 随 x 的增大而增大。b0 y 0 x 图像经过一、三、四象限,y 随 x 的增大而增大。k0 k0 y 0 x 图像经过一、二、四象限,y 随 x 的增大而减小 b0 时,图像经过第一、三象限,y 随 x 的增大而增大,图像从左之右上升;2当 k0 时,y 随 x 的增大而增大 2当 k0 时,直线与 y 轴交点在 y 轴正半轴上 4当 b0 k0 时,函数
7、图像的两个分支分别 在第一、三象限。在每个象限内,y 随 x 的增大而减小。x 的取值范围是 x0,y 的取值范围是 y0;当 k0 a0 y 0 x y 0 x 性质 1抛物线开口向上,并向上无限延伸;2对称轴是 x=ab2,顶点坐标是ab2,abac442;3在对称轴的左侧,即当 xab2时,y 随 x 的增大而增大,简记左减右增;4抛物线有最低点,当 x=ab2时,y 有最小值,abacy442最小值 1抛物线开口向下,并向下无限延伸;2对称轴是 x=ab2,顶点坐标是ab2,abac442;3在对称轴的左侧,即当 xab2时,y 随 x 的增大而 减小,简记左增右减;4抛物线有最高点,
8、当 x=ab2时,y 有最大值,abacy442最大值 2、二次函数与一元二次方程的关系二次函数与x轴交点情况:一元二次方程20axbxc是二次函数2yaxbxc当函数值0y 时的特殊情况.图象与x轴的交点个数:当240bac 时,图象与x轴交于两点1200A xB x,12()xx,其中的12xx,是 一 元 二 次 方 程200axbxca的 两 根 这 两 点 间 的 距 离2214bacABxxa 推导过程:假设抛物线cbxaxy2与x轴两交点为0021,xBxA,由于1x、2x是方程02cbxax的两个根,故 acxxabxx2121,aaacbacabxxxxxxxxAB44422
9、2122122121 当0 时,图象与x轴只有一个交点;当0 时,图象与x轴没有交点.1 当0a 时,图象落在x轴的上方,无论x为任何实数,都有0y;2 当0a 时,图象落在x轴的下方,无论x为任何实数,都有0y 记忆规律:一元二次方程的解是其对应的二次函数的图像与 x 轴的交点坐标。因此一元二次方程中的ac4b2,在二次函数中表示图像与 x 轴是否有交点。当0 时,图像与 x 轴有两个交点;当=0 时,图像与 x 轴有一个交点;当0)【或左(h0)【或下(k0)【或左(h0)【或左(h0)【或下(k0)【或向下(k0 时,抛物线开口向上;a0 时,抛物线开口向下;a的绝对值越大,开口越小 2
10、b和a共同决定抛物线对称轴的位置.由于抛物线cbxaxy2的对称轴是直线 abx2,故:0b时,对称轴为y轴;0ab即a、b同号时,对称轴在y轴左侧;0ab即a、b异号时,对称轴在y轴右侧.口诀左同 右异 3c的大小决定抛物线cbxaxy2与y轴交点的位置.当0 x时,cy,抛物线cbxaxy2与y轴有且只有一个交点0,c:0c,抛物线经过原点;0c,与y轴交于正半轴;0c,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,那么 0ab.知识点十四、中考点击 考点分析:内容 要求 1、函数的概念和平面直角坐标系中某些点的坐标特点 2、自变量与函数之间的变化关
11、系及图像的识别,理解图像与变量的关系 3、一次函数的概念和图像 4、一次函数的增减性、象限分布情况,会作图 5、反比例函数的概念、图像特征,以及在实际生活中的应用 6、二次函数的概念和性质,在实际情景中理解二次函数的意义,会利用二次函数刻画实际问题中变量之间的关系并能解决实际生活问题 命题预测:函数是数形结合的重要表达,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占 3-6 分左右一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占 6 分左右反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,36 分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决实际问题会求一元二次方程的近似值 分析近年中考,预计 2021 年除了继续考查自变量的取值范围及自变量与因变量之间的变化图像,一次函数的图像和性质,在实际问题中考查对反比例函数的概念及性质的理解 同时将注重考查二次函数,特别是二次函数的在实际生活中应用