《中考数学知识点总结四边形(6大知识点,细分小知识点)北师大版(1).pdf》由会员分享,可在线阅读,更多相关《中考数学知识点总结四边形(6大知识点,细分小知识点)北师大版(1).pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 1 四边形 考点一、四边形的相关概念 (3 分)1、四边形 在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。2、凸四边形 把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。3、对角线 在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。4、四边形的不稳定性 三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。5、四边形的内角和定理及外角和定理 四边形的内角和定理:四边形的内角和等于 360。四边形的外角和
2、定理:四边形的外角和等于 360。推论:多边形的内角和定理:n 边形的内角和等于)2(n180;多边形的外角和定理:任意多边形的外角和等于 360。6、多边形的对角线条数的计算公式 设多边形的边数为 n,则多边形的对角线条数为2)3(nn。考点二、平行四边形 (310 分)1、平行四边形的概念 两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“ABCD”表示,如平行四边形 ABCD 记作“ABCD”,读作“平行四边形ABCD”。2、平行四边形的性质(1)平行四边形的邻角互补,对角相等。(2)平行四边形的对边平行且相等。推论:夹在两条平行线间的平行线段相等。(3)平行四边形的对角线互相平
3、分。(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理 1:两组对角分别相等的四边形是平行四边形(3)定理 2:两组对边分别相等的四边形是平行四边形(4)定理 3:对角线互相平分的四边形是平行四边形(5)定理 4:一组对边平行且相等的四边形是平行四边形 4、两条平行线的距离 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。5、平行四边形的面积:S平行四边形=底边长高=ah 考点三、
4、矩形 (310 分)1、矩形的概念 有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等 2(4)矩形是轴对称图形 3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理 1:有三个角是直角的四边形是矩形(3)定理 2:对角线相等的平行四边形是矩形 4、矩形的面积 S矩形=长宽=ab 考点四、菱形 (310 分)1、菱形的概念 有一组邻边相等的平行四边形叫做菱形 2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形
5、 3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理 1:四边都相等的四边形是菱形(3)定理 2:对角线互相垂直的平行四边形是菱形 4、菱形的面积 S菱形=底边长高=两条对角线乘积的一半 考点五、正方形 (310 分)1、正方形的概念 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有 4 条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正
6、方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。先证它是菱形,再证有一个角是直角。(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)4、正方形的面积 设正方形边长为 a,对角线长为 b S正方形=222ba 考点六、梯形 (310 分)1、梯形的相关概念 一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下
7、底。梯形中不平行的两边叫做梯形的腰。3 梯形的两底的距离叫做梯形的高。两腰相等的梯形叫做等腰梯形。一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形 梯形 直角梯形 特殊梯形 等腰梯形 2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。(2)一组对边平行且不相等的四边形是梯形。3、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。(3)等腰梯形的对角线相等。(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。4、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。5、梯形的面积(1)如图,DEABCDSABCD)(21梯形(2)梯形中有关图形的面积:BACABDSS;BOCAODSS;BCDADCSS 6、梯形中位线定理 梯形中位线平行于两底,并且等于两底和的一半。