《高中数学平面的基本性质与推论章节知识点大全.docx》由会员分享,可在线阅读,更多相关《高中数学平面的基本性质与推论章节知识点大全.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、8.3平面的基本性质与推论最新考纲考情考向分析1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,题型主要以选择题和填空题的形式出现,解题要求有较强的直观想象和逻辑推理等核心素养,主要为中低档题.1.平面的基本性质及推论(1)平面的基本性质基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.基本性质2:经过不在同一直线上的三点,有且只有一个平面.基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只
2、有一条过这个点的公共直线.(2)平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.直线与直线的位置关系(1)位置关系的分类(2)判断两直线异面:与一平面相交于一点的直线与这个平面内不经过交点的直线是异面直线.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.概念方法微思考分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.题
3、组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)如果两个不重合的平面,有一条公共直线a,就说平面,相交,并记作a.()(2)两个平面,有一个公共点A,就说,相交于过A点的任意一条直线.()(3)如果两个平面有三个公共点,则这两个平面重合.()(4)经过两条相交直线,有且只有一个平面.()(5)没有公共点的两条直线是异面直线.()(6)若a,b是两条直线,是两个平面,且a,b,则a,b是异面直线.()题组二教材改编2.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30 B.45C.60 D.90答案C解
4、析连接B1D1,D1C,则B1D1EF,故D1B1C即为所求的角.又B1D1B1CD1C,B1D1C为等边三角形,D1B1C60.3.如图,在三棱锥ABCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件_时,四边形EFGH为菱形;(2)当AC,BD满足条件_时,四边形EFGH为正方形.答案(1)ACBD(2)ACBD且ACBD解析(1)四边形EFGH为菱形,EFEH,ACBD.(2)四边形EFGH为正方形,EFEH且EFEH,EFAC,EHBD,且EFAC,EHBD,ACBD且ACBD.题组三易错自纠4.是一个平面,m,n是两条直线,A是一个点,若m,n,
5、且Am,A,则m,n的位置关系不可能是()A.垂直 B.相交 C.异面 D.平行答案D解析依题意,mA,n,m与n可能异面、相交(垂直是相交的特例),一定不平行.5.如图,l,A,B,C,且Cl,直线ABlM,过A,B,C三点的平面记作,则与的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析AB,MAB,M.又l,Ml,M.根据公理3可知,M在与的交线上.同理可知,点C也在与的交线上.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为_.答案3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正
6、方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用例1如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.E,F分别是AB,AA1的中点,EFBA1.又A1BD1C,EFCD1,E,C,D1,F四点共面.(2)EFCD1,EF0),则AA1tAB.AB1,AA1t.A1C1,A1BBC1,cosA1BC1.t3,即3.思维升华用平移法求异面直线
7、所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.跟踪训练3(2018全国)在长方体ABCDA1B1C1D1中,ABBC1,AA1,则异面直线AD1与DB1所成角的余弦值为()A. B. C. D.答案C解析方法一如图,在长方体ABCDA1B1C1D1的一侧补上一个相同的长方体ABBAA1B1B1A1.连接B1B,由长方体性质可知,B1BAD1,所以DB1B为异面直线AD1与DB1所成的角或其补角.连接DB,由题意,得DB,BB12,DB1.在DBB1中,由余弦定理,得DB2BBDB2BB1DB
8、1cosDB1B,即54522cosDB1B,cosDB1B.故选C.方法二如图,以点D为坐标原点,分别以DA,DC,DD1所在直线为x,y,z轴建立空间直角坐标系Dxyz.由题意,得A(1,0,0),D(0,0,0),D1(0,0,),B1(1,1,),(1,0,),(1,1,),1101()22,|2,|,cos,.故选C.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例如图所示,四边形ABEF和ABCD都是梯形,BCAD且BCAD,BEFA且BEFA,G,H分别为FA,FD的中点.(1)证明:四边形BCHG是平
9、行四边形;(2)C,D,F,E四点是否共面?为什么?(1)证明由已知FGGA,FHHD,可得GHAD且GHAD.又BCAD且BCAD,GHBC且GHBC,四边形BCHG为平行四边形.(2)解BEAF且BEAF,G为FA的中点,BEFG且BEFG,四边形BEFG为平行四边形,EFBG.由(1)知BGCH.EFCH,EF与CH共面.又DFH,C,D,F,E四点共面.素养提升平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.1.四条线段顺次首尾相连,它们最多可确定的平面个数为()A.4 B.3 C.2 D.1答案A解析首尾相连的四
10、条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.a,b,c是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若ab,则a,b与c所成的角相等D.若ab,bc,则ac答案C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若ab,bc,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.3.如图所示,平面平面l,A,B,ABlD,C,Cl,则平面ABC与平面的交线是()A.直线ACB.直线ABC.直线CDD.直线
11、BC答案C解析由题意知,Dl,l,所以D,又因为DAB,所以D平面ABC,所以点D在平面ABC与平面的交线上.又因为C平面ABC,C,所以点C在平面与平面ABC的交线上,所以平面ABC平面CD.4.如图所示,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案A解析连接A1C1,AC,则A1C1AC,A1,C1,A,C四点共面,A1C平面ACC1A1,MA1C,M平面ACC1A1,又M平面AB1D1,M在平面ACC1A1与平面AB1D1的交
12、线上,同理A,O在平面ACC1A1与平面AB1D1的交线上.A,M,O三点共线.5.(2017全国)已知直三棱柱ABCA1B1C1中,ABC120,AB2,BCCC11,则异面直线AB1与BC1所成角的余弦值为()A. B. C. D.答案C解析方法一将直三棱柱ABCA1B1C1补形为直四棱柱ABCDA1B1C1D1,如图所示,连接AD1,B1D1,BD.图由题意知ABC120,AB2,BCCC11,所以AD1BC1,AB1,DAB60.在ABD中,由余弦定理知BD2AB2AD22ABADcosDAB2212221cos 603,所以BD,所以B1D1.又AB1与AD1所成的角即为AB1与BC
13、1所成的角,所以cos .故选C.方法二以B1为坐标原点,B1C1所在的直线为x轴,垂直于B1C1的直线为y轴,BB1所在的直线为z轴建立空间直角坐标系,如图所示.图由已知条件知B1(0,0,0),B(0,0,1),C1(1,0,0),A(1,1),则(1,0,1),(1,1).所以cos,.所以异面直线AB1与BC1所成角的余弦值为.故选C.6.正方体AC1中,与面ABCD的对角线AC异面的棱有_条.答案6解析如图,在正方体AC1中,与面ABCD的对角线AC异面的棱有BB1,DD1,A1B1,A1D1,D1C1,B1C1,共6条.7.(2019东北三省三校模拟)若直线l平面,平面平面,则直线
14、l与平面的位置关系为_.答案l或l解析直线l平面,平面平面,直线l平面,或者直线l平面.8.在三棱锥SABC中,G1,G2分别是SAB和SAC的重心,则直线G1G2与BC的位置关系是_.答案平行解析如图所示,连接SG1并延长交AB于M,连接SG2并延长交AC于N,连接MN.由题意知SM为SAB的中线,且SG1SM,SN为SAC的中线,且SG2SN,在SMN中,G1G2MN,易知MN是ABC的中位线,MNBC,G1G2BC.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为_.答案解析取圆柱下底面
15、弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以ADBC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1DAD.因为圆柱的轴截面ABB1A1是正方形,所以C1DAD,所以直线AC1与AD所成角的正切值为,所以异面直线AC1与BC所成角的正切值为.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,GH与EF平行;BD与MN为异面直线;GH与MN成60角;DE与MN垂直.以上四个命题中,正确命题的序号是_.答案解析还原成正四面体AD
16、EF,其中H与N重合,A,B,C三点重合.易知GH与EF异面,BD与MN异面.连接GM,GMH为等边三角形,GH与MN成60角,易证DEAF,又MNAF,MNDE.因此正确命题的序号是.11.如图所示,A是BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若ACBD,ACBD,求EF与BD所成的角.(1)证明假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是BCD所在平面外的一点相矛盾.故直线EF与BD是异面直线.(2)解取CD的中点G,连接EG,FG,则ACFG,EGBD
17、,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.又因为ACBD,则FGEG.在RtEGF中,由EGFGAC,求得FEG45,即异面直线EF与BD所成的角为45.12.如图,在三棱锥PABC中,PA底面ABC,D是PC的中点.已知BAC,AB2,AC2,PA2.求:(1)三棱锥PABC的体积;(2)异面直线BC与AD所成角的余弦值.解(1)SABC222,三棱锥PABC的体积为VSABCPA22.(2)如图,取PB的中点E,连接DE,AE,则EDBC,所以ADE(或其补角)是异面直线BC与AD所成的角.在ADE中,DE2,AE,AD2,cosADE.故异面直线BC与AD所成角的
18、余弦值为.13.平面过正方体ABCDA1B1C1D1的顶点A,平面CB1D1,平面ABCDm,平面ABB1A1n,则m,n所成角的正弦值为()A. B. C. D.答案A解析如图所示,设平面CB1D1平面ABCDm1,平面CB1D1,则m1m,又平面ABCD平面A1B1C1D1,平面CB1D1平面A1B1C1D1B1D1,B1D1m1,B1D1m,同理可得CD1n.故m,n所成角的大小与B1D1,CD1所成角的大小相等,即CD1B1的大小.又B1CB1D1CD1(均为面对角线),CD1B1,得sinCD1B1,故选A.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:ABEF;A
19、B与CM所成的角为60;EF与MN是异面直线;MNCD.以上四个命题中,正确命题的序号是_.答案解析如图,ABEF,正确;显然ABCM,所以不正确;EF与MN是异面直线,所以正确;MN与CD异面,并且垂直,所以不正确,则正确的是.15.如图,正方形ACDE与等腰直角三角形ACB所在的平面互相垂直,且ACBC4,ACB90,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为_.答案解析取DE的中点H,连接HF,GH.由题设,HFAD且HFAD,GFH为异面直线AD与GF所成的角(或其补角).在GHF中,可求HF2,GFGH2,cosGFH.16.如图所示,三棱柱ABCA1B1C1的
20、底面是边长为2的正三角形,侧棱A1A底面ABC,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC2FB2.(1)当点M在何位置时,BM平面AEF?(2)若BM平面AEF,判断BM与EF的位置关系,说明理由;并求BM与EF所成的角的余弦值.解(1)方法一如图所示,取AE的中点O,连接OF,过点O作OMAC于点M.因为ECAC,OM,EC平面ACC1A1,所以OMEC.又因为EC2FB2,ECFB,所以OMFB且OMECFB,所以四边形OMBF为矩形,BMOF.因为OF平面AEF,BM平面AEF,故BM平面AEF,此时点M为AC的中点.方法二如图所示,取EC的中点P,AC的中点Q,连接PQ,PB,BQ.因为EC2FB2,所以PEBF且PEBF,所以PBEF,PQAE,又AE,EF平面AEF,PQ,PB平面AEF,所以PQ平面AFE,PB平面AEF,因为PBPQP,PB,PQ 平面PBQ,所以平面PBQ平面AEF.又因为BQ平面PBQ,所以BQ平面AEF.故点Q即为所求的点M,此时点M为AC的中点.(2)由(1)知,BM与EF异面,OFE(或MBP)就是异面直线BM与EF所成的角或其补角.易求AFEF,MBOF,OFAE,所以cosOFE,所以BM与EF所成的角的余弦值为.